भारत कोकिंग कोल लिमिटेड

एक मिनिरत्न कम्पनी (कोल इंडिया लिमिटेड का एक अंग) महाप्रबंधक का कार्यालय, पूर्वी झरिया क्षेत्र पो.ओ.- भौरा, जिला - धनबाद (झारखण्ड) पिल - ८२८३०२, दूरआष - ०३२६-२३२००७७, इंगेल-cgmei@bccl.gov.in

पंजीकृत कार्यालयः कोयला भवन, कोयला नगर, धनबाद-

८२६००५, (झारखण्ड) CIN U10101JH1972GOI000918 दरभाष-०३२६-२३२००७७/फैक्स:०३२६-२२३००५०, ईमेल-

cos@bccl.gov.in

Bharat Coking Coal Limited

A MINI RATNA Co.

(A Subsidiary of Coal India Ltd)

Office of the General Manager, Eastern Jharia Area

P.O. Bhowra, Dist. Dhanbad (Jharkhand), PIN-828302

Tel: 0326-2320077, Email-cgmej@bccl.gov in

Regd.Off: Koyla Bhawan, Koyla Nagar, Dhanbad-825005, CIN: U10101JH1972GOI000918

Tel. 0326-2230190/FAX. 0326-2230050, Email - cos@bccl.gov.in

Date: 25/11/17

Ref. No.: BCCL/EJ/AM (Env.)/2017/ 499

To, The Director Ministry of Environment, Forests and Climate Change Regional office (ECZ) Bungalow No. A-2, Shyamali Colony Ranchi - 834002 **Jharkhand**

Sub.: Six monthly compliance report of the conditions of Environmental Clearance granted to Cluster X group of mines of BCCL for the period from April 2017 to September 2017.

(Ref.: EC Order No.- J-11015/380/2010-IA.II(M) dated 06.02.2013.)

Dear Sir.

Kindly find the enclosed here with the six monthly compliance report of the conditions of Environmental Clearance for the period from April, 2017 to September, 2017 in respect of Cluster X group of mines of BCCL.

Thanking You.

Encl.: Six monthly compliance report with annexure

Yours faithfully

General Manager Eastern Jharia Area, BCCL

Cluster X

CC to:

1. Director, 1A Monitoring Cell, Paryavaran Bhawan,

CGO Complex, New delhi-110003.

- 2. Dy. GM / HOD (Env.), BCCL, Koyla Bhawan, Dhanbad
- 3. AGM, E.J. Area, Bhowra, BCCL
- 4. Area Manager (Env.), E.J. Area
- 5. Master File

ENVIRONMENTAL CLEAGRANCE COMPLIANCE OF CLUSTER-X

(GRANTED VIDE J-11015/380/2010-IA.II (M) Dated 06.02.2013) (From April, 2017 to September, 2017)

CI NA	A Specific Conditions by MOSE.	Compliance
SI. No.	A. Specific Conditions by MOEF:	Compliance
l.	The maximum production from the opencast and underground section in the cluster shall not exceed beyond that for which environmental clearance has been granted for the cluster X as below:	Complied (100%). The production from the cluster is within the limit for which environmental clearance has been granted.
II.	All the void /water bodies should be backfilled up to Ground level and no OB dump at the end of mining.	It shall be complied. Action is being taken as specified in EMP.
III.	Extensive plantation should be provided on either side of Damodar River.	A proposal will be initiated for the plantation purpose along the Damodar river in the area which is under cluster X. In addition to this, Action has been taken for the plantation or eco-restoration work as per the Road Map prepared by Forest Research Institute (FRI), Dehradun. Annexure I – Details of Plantation in EJ Area (Cluster X)
IV.	Details of impact of mining on Damodar River should be assessed and provided;	Detail study on Damodar River will be taken up by CMPDI. However, CMPDI is carrying out the Environment Monitoring which comprises of sampling and analysis of water from Damodar River (SW 21 & SW 22) under surface water analysis. Result of upstream and downstream samples showing no major changes in water quality of Damodar river.
V.	Impact of mining on ground water of the area (Impact Zone) should be provided;	Study will be taken up by CMPDI. Ground water monitoring is being carried out by CMPDI.
VI.	A Garland drain should be provided and the drain water should not be discharged in to Damodar River;	No mine water is being discharged into Damodar river. Garland drain and toe wall will be provided along the stabilized O.B. dump and then it will be biologically stabilized through plantation/ ecorestoration works.
VII.	Excess water from mine after treatment should be supplied to the villagers;	An action plan for the utilization and treatment of surplus mine water has been prepared. In this regard 26 mines have been identified for implementation of the Phase-I of the action Plan.
VIII.	Rejects of washery along with dry carbon slurry should be utilized in power plant and other recognized vendors;	Being complied.
IX.	There should be no discharge from the Washery (Slurry) in to the Damodar River. The entire washery	All the washeries of BCCL are designed on Closed Circuit System to ensure no

	water should be recycled;	discharge from the washery premises.
X.	Damodar River should be protected by plantation on both sides;	A proposal will be initiated for the plantation purpose along the Damodar river in the area which is under cluster X. In addition to this, Action has been taken for the plantation or eco-restoration work as per the Road Map prepared by Forest Research Institute (FRI), Dehradun.
XI.	A herbal garden with medicinal plants be developed;	Kamini Kalyan Herbal Garden with 3.32 Ha. area has been taken up for 2016-17. Medicinal/ herbal plants have been planted as per FRI / BCCL Env. Dept. HQ guidelines.
XII.	A time schedule for filling of existing and abandoned quarries be done.	It is being complied.
XIII.	Of the total water bodies area of 286.54 ha in the post mining land use, consist of 243.97 ha of natural water bodies like Damodar river and no. of water ponds. Only 42.57 ha of mine voids were proposed to be converted to artificial water bodies for catering to domestic use of local villagers. Keeping in view the Damodar river in the vicinity, there should be no additional water bodies are created from mine.	It will be complied.
XIV.	The measure identified in the environmental plan for cluster X groups of mine and the conditions given in this environmental clearance letter shall be dovetailed to the implementation of the Jharia action plan.	Master plan/Jharia Action Plan is dovetailed with environmental clearance conditions.
XV.	As there is no fire in cluster X but the measure should be adopted by proponent to control the spread of neighboring fire to the cluster X. The proponent shall prepare time series maps of the Jharia Coalfields through NRSA to monitor and prevent fire problems in the Jharia Coalfield by isothermal mapping/ imaging and monitoring temperatures of the coal seams (whether they are close to spontaneous ignition temperatures) and based on which, areas with potential fire problems shall be identified. Measures to prevent ingress of air (ventilation) in such areas, to prevent restart fresh/ spread fires in other areas including in mines of cluster XIV shall be undertaken.	Work has been awarded to NRSC (earlier NRSA) to monitor and prevent fire problems in the Jharia Coalfield and NRSC has submitted their final report. Fire affected area has been reduced from 9.00 Km² to 2.18 Km². For further dealing of fire and subsidence action has been taken and working as per the strategic plan of digging out of fiery coal followed by reclamation. A Global EOI was floated to control fire in Jharia Coalfield. None of the bidder qualified. Presently (i.e. in 2017) the Work Order for "Delineation of Surface Fire and associated land subsidence in Jharia Coal Field using satellite based remote sensing techniques" has already been awarded to NRSC under the MoU signed with NRSC. Measure to prevent ingress of air (ventilation) is being taken as specified in EMP and as per Jharia Master Plan. Further fire patches are under operation to

		I
		dig out the fiery coal and combustible materials to save the coal from burning and to stop further spread of the fire. Once the fiery coal is dug-out/excavated there will be no more chance of re-starting of fresh/ spreading of fire into other areas. Annexure II — Work Order awarded to NRSA regarding delineation of the surface coal fire.
XVI.	Underground mining should be taken up after completion of reclamation of Opencast mine area after 2 years.	It is being complied. Mining is being done as per the guidelines and approval/permission of Directorate General of Mines Safety (DGMS).
XVII.	No mining shall be undertaken where underground fires continue. Measure shall be taken to prevent/check such fire including in old OB dump.	It is being complied. There is no fire in Cluster X. However action is being taken to control, mine fires including old OB dump areas as specified in Jharia Master Plan and the mining is being done as per the guidelines and permissions of Directorate General of Mines Safety (DGMS).
XVIII.	A part of cluster X is under River Damodar. It was clarified that although the mine is underground, there is no coal underneath River Damodar, which would be mined. The Committee desired that the data of bore wells near River Damodar require to be monitored for permeability and seepage of waster of River Damodar.	CMPDI RI-II has been requested to conduct study of permeability and seepage of water of River Damodar.
XIX.	The rejects of washeries in Cluster –X should be send to FBC based plant.	It will be complied.
XX.	There shall be no external OB dumps. OB produce from the whole cluster will be 29.01 Mm3. OB from One Patch OCP mine shall be backfilled. At the end of the mining there shall be no void and the entire mined out area shall be re-vegetated. Areas where opencast mining was carried out and completed shall be reclaimed immediately thereafter.	Action is being taken as specified in EMP. O.B. removed from mine/ collieries are back filled in old/ abandoned quarry/voids. At the end of the mining, there shall not be voids and area will be re-vegetated and reclaimed with the proper eco-restoration techniques suggested by the experts available in BCCL and in external agencies i.e. FRI Dehradun, CEMDE Delhi
XXI.	A detailed calendar plan of production with plan for OB dumping and backfilling (for OC mines) and reclamation and final mine closure plan for each mine of cluster- X shall be drawn up and implemented.	Calendar plan of production and OB removal has been prepared for year 2015-16 to 2017-18. Mine closure plan as per the guidelines of Ministry of Coal have been prepared by Central Mine Planning and Design Institute (CMPDI) and it is being implemented. Annexure III — Calendar Year plan of cluster X for year 2015-16 to 2017-18.

XXII.	The void in 5 ha area shall be converted into a water reservoir of a maximum depth of 15-20 m in post mining stage and shall be gently sloped and the upper benches of the reservoir shall be recognized with plantation and the periphery of the reservoir fenced. The abandoned pits and voids should be backfilled with OB and biologically reclaimed with plantation and or may be used for pisciculture	It shall be complied. A part of the void will be converted into the water body as specified in EMP. Detailed plan of COCP Bhowra O/C to be prepared for Pisciculture and boat, plantation, sitting arrangement etc. will be provided around the periphery of the reservoir and which will be developed as water recreational park.
XXIII.	Mining shall be carried out as per statuette from the streams/nalas flowing within the lease and maintaining a safe distance from the Nalas flowing along the lease boundary. A safety barrier of a minimum 60 m width shall be maintained along the nalas/water bodies. The small water bodies in OC shall be protected to the extent feasible and the embankment proposed along water body shall be strengthened with stone pitching. Active OB dumps near water bodies and rivers should	It is being followed. Action for construction of embankment has been taken as specified in EMP. Every year monsoon preparation programme is carried out by colliery / mines before the onset of monsoon for protection of mines from rain water flow and to maintain a safe distance from nalas flowing or small water bodies protection in the lease boundary. No OB is being dumped near water
	be rehandled for backfilling abandoned mine voids. However, those which have been biologically reclaimed need not be disturbed.	bodies. The OB dumps created earlier already stabilized & further action has been taken for their eco-restoration work as per Road Map prepared by FRI, Dehradun.
XXV.	Thick green belt shall be developed along undisturbed areas, mine boundary and in mine reclamation. During post mining stage, a total of 47.63 ha area would be reclaimed by planting native species in consultation with the local DFO/Agriculture Department/institution with the relevant discipline. The density of the trees shall be around 2500 plants per ha.	It is being complied. Yearly plantation is being done for development of green belts as per EMP. Eco-restoration sites of 19.64 Ha. has been already taken up and 3.10 Ha. has been started in 2017-18. In addition to this, 3.32 Ha. of area will be developed as Herbal garden center. All the Ecological restoration work in the BCCL is under the supervision of FRI Dehradun.
XXVI.	The road should be provided with avenue plantation on both side as trees act as sink of carbon and other pollutant.	Due to absence of permanent roads in the coalfield, avenue plantation couldn't be done but trees were planted near permanent structures to minimize the pollution. However, it has been requested from colliery to provide a proposal for plantation along the road approaching to colliery office.
XXVII.	Specific mitigative measures identified for the Jharia Coalfields in the Environmental Action Plan prepared for Dhanbad as a critically polluted area and relevant for Cluster –XIV shall be implemented.	Dhanbad Action Plan has been prepared in consultation with Jharkhand Pollution Control Board for entire BCCL. It is being implemented comprehensively for all the mines of BCCL. Some of the salient actions of this cluster are as under: 1. Construction of pucca road.

		Construction of water reservoir for mine water utilization Plantation.
XXVIII.	The locations of monitoring stations in the Jharia Coalfields should be finalized in consultation with the Jharkhand State Pollution Control Board. The Committee stated that smoke/dust emission vary from source to source (fuel wood, coal, fly ash from TPPs, silica from natural dust, etc) and a Source Apportionment Study should be got carried out for the entire Jharia Coalfields. Mineralogical composition study should be undertaken on the composition of the suspended particulate matter (PM10 and PM2.5) in Jharia Coalfields and also quantified. These studies would help ascertain source and extent of the air pollution, based on which appropriate mitigative measures could be taken.	The locations of monitoring stations have been finalized in consultation with JSPCB. The monitoring work of ambient environment quality is being carried out by Central Mine Planning & Design Institute Limited (CMPDIL) which is having CSIR laboratory recognized under the EP Rules. Tender for conducting Source Apportionment Study for BCCL was floated twice, however, none of the bidders qualified. Therefore, as per the MoU "Sustainable Coal Mining in Coal India Limited" entered between CIL and NEERI, NEERI Nagpur was approached for conducting Source Apportionment Study BCCL for compliance of EC conditions. The proposal regarding Conducting the Source Apportionment Study has been submitted by NEERI. Presently it has been submitted to CIL for further scrutiny and approval.
XXIX.	No groundwater shall be used for the mining activities. Additional water required, if any, shall be met from mine water or by recycling/reuse of the water from the existing activities and from rainwater harvesting measures. The project authorities shall meet water requirement of nearby village(s) in case the village wells go dry to dewatering of mine.	It is being complied and mine water is being used for the industrial purpose like water sprinkling to suppress dust generation, etc. Further Mine water is also utilized for the community and irrigation purposes. Following action has been taken by the company: Installation of Pressure filters for utilization of mine water. In cluster X, there is three nos. of Rapid Gravity Pressure Filter plant of total 1.72 MGD capacity, which is used for supply of water in nearby colonies, houses, quarters. Annexure IV – Details of water Filter plants in Cluster X.
XXX.	Regular monitoring of groundwater level and quality of the study area shall be carried out by establishing a network of existing wells and construction of new peizometers. The monitoring for quantity shall be done four times a year in pre-monsoon (May), monsoon (August), post-monsoon (November) and winter (January) seasons and for quality including Arsenic and Fluoride during the month of May. Data	Regular monitoring of Ground water quality is being carried out by CMPDIL. The Ground water Level and Quality report for Clusters of mines (including Cluster X), BCCL have been submitted by CMPDIL & attached as Annexure V. Annexure V – Ground water level and Quality report.

	thus collected shall be submitted to the Ministry of Environment & Forest and to the Central Pollution Control Board/SPCB quarterly within one month of monitoring. Rainwater harvesting measures shall be undertaken in case monitoring of water table indicates a declining trend.	Establishment of new piezometers is under process. CMPDI has prepared a report for design location and construction of 23 Nos of Piezometer covering all the 17 clusters of BCCL. Tender for establishing and construction of a network of piezometer well system was opened on 05 th May 2017, in which only one bidder has participated. The tender is under scrutiny.
XXXI.	Mine discharge water shall be treated to meet standards prescribed standards before discharge into natural water courses/agriculture. The quality of the water discharged shall be monitored at the outlet points and proper records maintained thereof and uploaded regularly on the company website.	Mine discharge water is being allowed to settle down in the mine sumps before disposal into storage reservoirs. The monitoring of water quality parameters is being done by CMPDIL and parameters are well within the prescribed limit provided by CPCB.
XXXII.	ETP shall also be provided for workshop, and CHP, if any. Effluents shall be treated to confirm to prescribe standards in case discharge into the natural water course.	The work of installation of Oil and Grease Trap arrangement has been taken up with CMPDI. The subject assignment will be completed within eight months from the date of issue of work order.
XXXIII.	Regular monitoring of subsidence movement on the surface over and around the working area and impact on natural drainage pattern, water bodies, vegetation, structure, roads, and surroundings shall be continued till movement ceases completely. In case of observation of any high rate of subsidence movement, appropriate effective corrective measures shall be taken to avoid loss of life and material. Cracks shall be effectively plugged with ballast and clayey soil/suitable material.	At present only development districts are operational at UG mines in Cluster X and no depillaring district is taken up. However regular monitoring of subsidence will be undertaken on operating depillaring districts.
XXXIV.	Sufficient coal pillars shall be left unextracted around the air shaft (within the subsidence influence area) to protect from any damage from subsidence, if any.	Sufficient coal pillars have been left around air shafts as per the statutes and DGMS guidelines.
XXXV.	High root density tree species shall be selected and planted over areas likely to be affected by subsidence.	Identification of high root density Plant species and its plantation in subsidence prone area will be taken-up at the time of depillaring operations.
XXXVI.	Depression due to subsidence resulting in water accumulating within the low lying areas shall be filled up or drained out by cutting drains.	It shall be complied, where ever applicable.
XXXVII.	Solid barriers shall be left below the roads falling within the blocks to avoid any damage to the roads.	It is being followed. Sufficient barriers are left for saving the surface installation and infra structures as per the statute and DGMS guidelines.
XXXVIII.	No depillaring operation shall be carried out below the township/colony.	It is being followed.

XXXIX.	The Transportation Plan for conveyor-cum-rail for Cluster- X should be dovetailed with Jharia Action Plan. Road transportation of coal during Phase-I should be by mechanically covered trucks, which should be introduced at the earliest. The Plan for conveyor-cum-rail for Cluster-XIV should be dovetailed with Jharia Action Plan. The road transpiration of coal during phase-I should be by mechanically covered trucks.	Action has been taken for formulating the adequate transportation plan for conveyor cum rail system of dispatch. CMPDIL, RI-II has been requested to conduct study and prepare the plan in this regarding. By that time transportation is being done by covering vehicle with tarpaulin cover. Initiatives has been taken at corporate level of coal India Limited for developing the mechanically covered trucks and a vendor meeting for the same has been held with the OEM on dated 07.05.2016. Further, a proposal for inclusion of mechanically covered trucks in the Contract Terms has been initiated to ensure that the Outsourcing company should deploy Mechanically Covered Trucks for coal Transportation.
XL.	A study should be initiated to analyze extent of reduction in pollution load every year by reducing road transport.	CMPDI is carrying out the study to analyze extent of reduction in pollution load every year by reducing road transport. Pollution load study report for Cluster IV, XIII, XIV and XVI have been submitted by CMPDI and reports for rest of the clusters (including cluster X) are awaited.
XLI.	R&R of 1670 nos of PAF's involved. They should be rehabilitated at cost of Rs 7087.75 Lakhs as per the approved Jharia Action Plan.	Implementation of master plan has already been started through Jharkhand Rehabilitation and Development Authority (JRDA), Dhanbad and 547 families (Non-BCCL) has been rehabilitated at wellestablished Jharia Vihar Township located at Belgoria.
XLII.	Details of transportation, CSR, R&R and implementation of environmental action plan for each of the 17 clusters should be brought out in a booklet for and submitted to Ministry.	A separate booklet comprising of CSR activities has been prepared and attached as annexure VI (B). Annexure VI (B) – Detail of CSR activity of Cluster X
XLIII.	A detailed CSR Action Plan shall be prepared for Cluster X group of mines. Specific activities shall be identified for CSR of Rs 20.25/annum @ of Rs 5/ton of coal production. As recurring expenditure. The 47.63 ha of area within Cluster XIV ML existing as waste land and not being acquired shall be put to productive use under CSR and developed with fruit bearing and other useful species for the local communities. Third party evaluation shall be got carried out regularly for the proper implementation of activities undertaken in the project area under CSR.	It being complied. BCCL is implementing CSR Activities. CSR action plan of BCCL for 2016-17 including CSR budget and expenditure during 2016-17 is enclosed as Annexure VI (A). A separate CSR committee has been formed at Area level of Bhowra for cluster-X, who will look after the works being executed under CSR. A booklet comprising of CSR activities conducted by E.J. area has been prepared and attached

	Issue raised in the Public Hearing shall also be integrated with activities being taken up under CSR. The details of CSR undertaken along with budgetary provisions for the village-wise various activities and expenditure thereon shall be uploaded on the company website every year. The company must give priority to capacity building both within the company and to the local youth, who are motivated to carry out the work in future.	as annexure VI (B) – Detail of CSR activity of Cluster X.
XLIV.	For monitoring land use pattern and for post mining land use, a time series of land use maps, based on satellite imagery (on a scale of 1: 5000) of the core zone and buffer zone, from the start of the project until end of mine life shall be prepared once in 3 years (for any one particular season which is consistent in the time series), and the report submitted to MOEF and its Regional office at Bhubaneswar.	Presently a time series map of vegetation cover in the Jharia Coal Field is being carried out through CMPDI, Ranchi using satellite imagery for every 3 years. The Vegetation Cover Mapping of Jharia Coalfield based on Satellite Data of the Year- 2016 has been submitted by CMPDIL and attached as annexure VII. Annexure VII – Vegetation Cover Mapping of Jharia Coalfield based on Satellite Data of year 2016.
XLV.	A Final Mine Closure Plan along with details of Corpus Fund shall be submitted to the Ministry of Environment & Forests five year before mine closure for approval. Habitat Restoration Plan of the mine area shall be carried out using a mix of native species found in the original ecosystem, which were conserved in-situ and ex-situ in an identified area within the lease for reintroduction in the mine during mine reclamation and at the post mining stage for habitat restoration.	Mine closure plan as per the guidelines of Ministry of Coal has been prepared by CMPDI and it is being complied.
XLVI.	A separate environmental management cell with suitable qualified personnel shall be set up under the control of a Senior Executive, who will report directly to the Head of the company for implementing environment policy and socioeconomic issues and the capacity building required in this regard.	A full-fledged Environment Department, headed by a HoD (Environment) along with a suitable qualified multidisciplinary team of executives which includes Environment, Mining, Excavation, Civil executives and technicians has been established in Headquarters. They are also trained in ecological restoration, sustainable development, rainwater harvesting methods etc. At the project level, one Executive in each area has also been nominated as Project Nodal Officer (Environment) and is also entrusted with the responsibility of compliance and observance of the environmental acts/ laws including environment protection measures. The activities are monitored on regular basis at

	T	
		Area and at Head quarter levels. GM
		(Environment) at head quarter level,
		co-ordinates with all the Areas and reports
		to the Director (Technical) and in turn he
		reports to the CMD of the company.
		The team is multidisciplinary and very
		much motivated under the guidance of
		company's Director (Technical) and CMD.
		Further capacity building at both corporate
		and operating level is being done.
XLVII.	Implementation of final mine closure plan for Cluster	Final Mine Closure Plan has been
	X, subject to obtaining prior approval of the DGMS in	prepared for each Mine in this cluster.
	regard to mine safety issues	Before implementation of final mine
		closure plan, prior permission from DGMS
		has been taken in regard to mine safety
		issues.
XLVIII.	Corporate Environment Responsibility:	A well-defined Corporate Environment
	A. The Company shall have a well laid down	Policy has already been laid down and
	Environment Policy approved by the Board of	approved by the Board of Directors. This is
	Directors.	also posted on BCCL website.
	B. The Environment Policy shall prescribe for	Complied.
	standard operating process/procedures to bring into	
	focus any infringements/deviation/violation of the	
	environmental or forest norms/conditions.	
	C. The hierarchical system or Administrative Order of	A hierarchical system of the company to
	the company to deal with environmental issues and	deal with environmental issues from
	for ensuring compliance with the environmental	corporate level to mine level already
	clearance conditions shall be furnished.	exists.
	D. To have proper checks and balances, the company	Being complied.
	shall have a well laid down system of reporting of	
	non-compliances/violations of environmental norms to	
	the Board of Directors of the company and/or	
	shareholders or stakeholders at large.	
В.	General Conditions by MOEF:	
l.	No change in mining technology and scope of working	Being complied.
	shall be made without prior approval of the Ministry of	
	Environment and Forests.	
II.	No change in the calendar plan of production for	Being followed. Production is being done
	quantum of mineral coal shall be made	well within production capacity of this
		cluster as per EC.
III.	Four ambient air quality monitoring stations shall be	The optimum location of monitoring
	established in the core zone as well as in the buffer	stations in Jharia Coal Field finalized in
	zone for PM10, PM2.5, SO2 and NOx monitoring.	consultation with the Jharkhand State
	Location of the stations shall be decided based on the	Pollution Control Board. Ambient air
	meteorological data, topographical features and	quality is being regularly monitored by
L	· · · · · · · · · · · · · · · · · · ·	

	environmentally and ecologically sensitive targets in consultation with the State Pollution Control Board. Monitoring of heavy metals such as Hg, As, Ni, Cd, Cr, etc carried out at least once in six months.	CMPDIL. Annexure VIII – Environmental Monitoring Report for cluster X.
IV.	Data on ambient air quality (PM10, PM 2.5, SO2 and NOx) and heavy metals such as Hg, As, Ni, Cd, Cr and other monitoring data shall be regularly submitted to the Ministry including its Regional Office at Bhubaneswar and to the State Pollution Control Board and the Central Pollution Control Board once in six months. Random verification of samples through analysis from independent laboratories recognized under the EPA rules, 1986 shall be furnished as part of compliance report.	Ambient air quality data (PM10, PM2.5, SO2 and NOx) and other monitoring data have been regularly monitored and analyzed by CMPDIL and submitted the report, which is attached. Annexure VIII – Environmental Monitoring Report for cluster X.
V.	Adequate measures shall be taken for control of noise levels below 85 dBA in the work environment. Workers engaged in blasting and drilling operations, operation of HEMM, etc shall be provided with ear plugs/muffs.	It is being complied in mines and also the Noise levels are below the Ambient Noise Standard (Day time 75 dB & Night Time (70 dB for Industrial Area). However, ear muffs / ear plugs are provided to the workers engaged in blasting and drilling operations, HEMM operations etc.
VI.	Industrial wastewater (workshop and wastewater from the mine) shall be properly collected, treated so as to conform to the standards prescribed under GSR 422 (E) dated 19th May 1993 and 31 st December 1993 or as amended from time to time before discharge. Oil and grease trap shall be installed before discharge of workshop effluents.	The optimum location of monitoring stations in Jharia Coal Field finalized in consultation with the Jharkhand State Pollution Control Board. Mine water & ground water quality is being regularly monitored by CMPDIL. Physico-Chemical characteristics of effluents are well within the prescribed limit. For installation of oil and grease trap, a proposal has been moved to CMPDIL through HQ coordination.
VII.	Vehicular emissions shall be kept under control and regularly monitored. Vehicles used for transporting the mineral shall be covered with tarpaulins and optimally loaded.	Vehicular emissions are being under control and the pollution control certificate issued by state pollution control board is also provided to vehicles which are verified by area manager (transport) and area manger (E&M) regularly. All the vehicles used for coal transportation are covered with tarpaulins.
VIII.	Monitoring of environmental quality parameters shall be carried out through establishment of adequate number and type of pollution monitoring and analysis equipment in consultation with the State Pollution Control Board and data got analysed through a laboratory recognized under EPA Rules, 1986.	Monitoring of Environmental quality parameters have been regularly done by CMPDIL with proper analysis equipment.
IX.	Personnel working in dusty areas shall wear protective respiratory devices and they shall also be	It is being complied. All Personnel working in mines are provided with reparatory

provided with adequate training safety and health aspects.	masks and safety eyeglass to protect the dust inhalation. A separate full-fledged Human Resource Development Department is conducting regular training programme on these issues. Apart from this, Vocational Training Center exist in E.J. area (cluster X), which provides periodical training on the safety and occupational health issue to workers working in the mines.
X. Occupational health surveillan workers shall be undertaken pany contractions due to exposi corrective measures, if maintained thereof. The quality outsourcing and the health an outsourced manpower should company while outsourcing.	ce programme of the periodically to observe ure to dust and to take eeded and records of environment due to disafety issues of the linitial Medical Examination (IME) and Periodical Medical Examination (PME) of all the personnel are carried out as per the Statutes and Director General of Mines Safety (DGMS) guideline. Annexure IX – List of IME and PME of
XI. A separate environmental m suitable qualified personnel sha control of a Senior Executive, to the Head of the company.	all be set up under the headed by a HoD (Environment) along
XII. The funds earmarked for entermoderate measures shall be kept in sepa	·

	not be diverted for other purpose. Year-wise	
	expenditure shall be reported to this Ministry and its	
	Regional Office at Bhubaneswar.	
XIII.	The Project authorities shall advertise at least in two	It has been complied. Advertisement in
XIII.	local newspapers widely circulated around the project,	local newspaper has also been done.
	one of which shall be in the vernacular language of	local newspaper has also been done.
	the locality concerned within seven days of the	
	clearance letter informing that the project has been	
	accorded environmental clearance and a copy of the	
	clearance letter is available with the State Pollution	
	control Board and may also be seen at the website of	
	the ministry of Environment & Forests at	
	http://envfor.nic.in.	
XIV.	A copy of the environmental clearance letter shall be	Complied.
	marked to concern Panchayat/Zila Parishad,	
	Municipal corporation or Urban local body and local	
	NGO, if any, from whom any suggestion	
	/representation has been received while processing	
	the proposal. A copy of the clearance letter shall also	
	be displayed on company's website.	
XV.	A copy of the environmental clearance letter shall be	Complied.
	shall also be displayed on the website of the	
	concerned State Pollution Control Board. The EC	
	letter shall also be displayed at the Regional Office,	
	District Industry Sector and Collector's	
	Office/Tehsildar's Office for 30 days.	
XVI.	The clearance letter shall be uploaded on the	Complied.
	company's website. The compliance status of the	The clearance letter has been uploaded on
	stipulated environmental clearance conditions shall	the BCCL website.
	also be uploaded by the project authorities on their	
	website and updated at least once every six months	
	so as to bring the same in public domain. The	
	monitoring data of environmental quality parameter	
	(air, water, noise and soil) and critical pollutant such	
	as PM10, PM2.5, SO2 and NOx (ambient) and critical	
	sectoral parameters shall also be displayed at the	
	entrance of the project premises and mine office and	
	in corporate office and on company's website.	
XVII.	The project proponent shall submit six monthly	Being complied.
	compliance reports on status of compliance of the	5 - 1
	stipulated environmental clearance conditions (both in	
	hard copy and in e-mail) to the respective Regional	
	Office of the Ministry, respective Zonal Offices of	
	CPCB and the SPCB.	
XVIII.	The Regional Office of this Ministry located at	Project authority is ready to extend its full
7, V III.	Bhubaneswar shall monitor compliance of the	cooperation for any kind of visit and
	stipulated conditions. The Project authorities shall	inspection conducted by Regional Office in
	extend full cooperation to the office(s) of the Regional	connection with EC Conditions
	resterio ruii cooperation to the office(s) of the Regional	

	Office by furnishing the requisite data/ information/monitoring reports.	Compliance.
XIX	The Environmental statement for each financial year ending 31 March in Form –V is mandated to be submitted by the project proponent for the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be uploaded on the company's website along with the status of compliance of EC conditions and shall be sent to the respective Regional Offices of the MoEF by E-mail.	Environmental Statement (Form-V) has been regularly submitted for each financial year to Jharkhand State Pollution Control Board. Annexure X — Environmental statement (Form-V) of projects/collieries of E.J. Area attached.
C.	Other Conditions by MOEF:	
i.	The Ministry or any other Competent Authority may stipulate any further condition(s) for environmental protection.	Agreed.
ii.	Failure to comply with any of the conditions mentioned above may result in withdrawal of this clearance and attract the provisions of the Environment (Protection) Act, 1986.	Agreed.
III.	The above conditions will be enforced inter-alia, under the provisions of the Water (Prevention & Control of Pollution) Act, 1974, the Air (Prevention & Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986 and the Public Liability Insurance Act, 1991 along with their amendments and Rules. The Proponent shall ensure to undertake and provide for the costs incurred for taking up remedial measures in case of soil contamination, contamination of groundwater and surface water, and occupational and other diseases due to the mining operations.	It is being complied.
IV.	- i () Classes is subject to the	Agreed.

Area Manager (Env.)
EJ Area

Project Officer Bhowra (North), Project Officer Bhowrac(South), EJ Area

Addl. General Manager EJ Area, BCCL Cluster X Project Officer ASP,

oject Officer Pro ASP, EJ Area

Project Officer Amlabad, EJ Area

General Manager EJ Area, BCCL Cluster X

			Planta	tion Data of BCCL (Pr	oject wise)	SAME	1 -4 1	Total	Total
S	Name of the Area	Name of unit/Colliery	Afforestat	DFO DFO	The Court of the C	Restoration	Gabion plantation by	Plantation area (ha)	Plantation (non)
			Area (Ha)	No of Plants	Area (Ha)		DFO	3rea (83) 7	3150
		Damoda (Mix)	THE STATE OF	Contract of the same	7	31500		237.36	59257
		Muraidih OCP	183,71	565933	53.65	26645	1000	625	20343
1	Barora	Phularitand	- 60	194730	2.5	7700	1000	023	200-63
2	Block-II	Amalgamated Block-II OCP (ABOCP)	15	37500	10.8	27000	570	25.8	6507
	AND DESCRIPTION	Maheshpur Colliery	6	15000			250	6	1525
		South Govindpur Colliery	20	50000	Chica Succession	DIVINE VALE	BENEFIT IN CO.	20	5000
	Service Services	New Akashkinaree Mixed	12	30000	13.5	33750	THE REPORT OF THE PARTY OF THE	25.5	6379
3	Govinpur	Kharkharee	14	35000			计算表的信息	14	3500
	MONTH OF THE	AKWMC	17.08	9075	6.42	16050	1685	23.5	26810
		Katras Choitdih	2	1060	York Div	are all living		2	1060
		salanpur	1	530			Zinger Ville	1	530
4	Katras	Gaslitand	1	530				1	530
	THE STATE OF	Nichtpur OC Mine	5	10000	2.8	7000	1320	7.8	18320
		Tetulmari Colliery	5	10000	10.3	25750		15.3	35750
		Mudidih Colliery	5	10000	STAR SOL		ESWESS.	5	10000
		Sendra Bansjore Colliery	10	20000				10	20000
		Loyabad UG Mine	40	80000		5 20 5 20 5		40	80000
		Bansdeopur Colliery	5	10000	Redinates			5	10000
1	5 Syua	Kankanee Colliery	3	6000		The state of		3	6000
		East Bassuriya Colliery	19.5	39000			TO SECULIAR STATE OF	19.5	39000
1	6 Kusunda	Gondudih Khas kusunda (GKKC)	10.5	21000	6.79	16975	500	17.29	38475
		Burragarh	5		7	42000	1390	12	49425
	PARTITION OF THE	Simlababal	3	3621	ENGINEE .			1	3621
		Humladih	3	3621	Teller and	- Calculate	E E UNION	3	3621
		Kustore	3	3624	ALCOHOL:			3	3624
100		Kachhi Balihari 10/12 Pit	5					5	6035
	7 PB	PB Project	2	2414				2	2414
100		South Jhana/ Rajapur OCP	THE REAL PROPERTY.		12	30000	500	12	30500
		East Bhuggatdih	29.5	59000	The state of the s			29.5	59000
1		Bastacolla	10.8	21600	0330 A		THE COURSE OF LESS	10.8	21600
	The state of the s	Bera			7.67	19175		7.67	19175
-	A PARTY AND A PART	Dobari	10	20000			STATE OF THE PARTY	10	20000
	8 Bastacolla	Geluckdili	9.7	19400		THE OWNER OF THE PERSON NAMED IN		9.7	19400

T	Name of the	Name of unit/Colliery	Afforestati	on/plantation by DFO	Ecologic	I Restoration	Gabion plantation by	Total Plantation	Total Plantatio
0	Ares	Table of Balls Comery	Area (IIa)	No of Plants	Area (Ha)	No of Plants	DFO	area (ha)	(nos)
1		Kujama	20	40000			1848	20	418
		Lodna	8	16000				8	160
		NT/ST			15	37500		15	375
		Jealgora	5	10000				5	100
		Bagdigi	10	20000		The second	Supplement.	10	200
		Joyrampur	10	20000	3			10	2000
9	Lodna	Bararee	7	14000				7	1400
		Bhowrah North	10	12000	5.2	13000	2500	15.2	2750
		Bhowrah South			8.73	21825		8.73	2182
		Patherdih Mix	10	12000	5.71	14275		15.71	2627
		Sudamdih	70	\$4000	SUMBLET.			70	8400
10	EJ	Amlabad	10	12000		M. Stationer		10	1200
	W 10 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Moonidih	130	215000				130	21500
		Murulidih	20	20000	7.5	18750	Water District	27.5	3875
		Murulidih 20/21 Pit	10	10000				10	1000
		Bhurungiya	20	20000				20	2000
		Muchraidih	20	20000	new all of the			20	2000
		Hantoodih	15	15000	The Land	De College	SHARETURE	15	1500
		Padusora	15	15000	MARCHE TR		AND DESCRIPTION OF STREET	15	15000
		Bhatdee	20	20000		第27 法原因	ASSURE S	20	2000
11	WJ	Lohopetti	10	10000	A SERVICE			10	10000
	@ No. 10 A View	Damagoria	14.5	44515		100 mg 100 mg	7300	145	5181
	Ballion Co.	Bunkundar	46	141235	56	15241	District Control	516	156476
12	CV	NL OCP	能力表現的複雜		16.5	9879	Charles Labor 6	16.5	9879
12	Control Control	Koyla Nagar	10.5	12600	VONEZ IN	May - No.	4450	10.5	17050
	1	Jagavan Nagar	3.4	4080	A THEORY	AUTO		3.4	4080
		Washery division	35	110250			125	35	110375
		CCWO Colony	2.6	3120	S. S. S. O.	MANUFACTURE STATE OF		2.6	3120
	01	Bhuli Township	89	10630	STREET, ST	No. of the last of		8.9	10630
13	13 Others	TOTAL	1056.69	2202188	204 67	414015	23438	1261.36	2639641

		Detail of Ecolog	gical Resto	oration of E	.J. Area as on	30th Sept.	, 2017		
Area	a/ Colliery	Site Name	Area (Ha)	Taken up		Pl	antation (N	os)	
				in	2014-15	2015-16	2016-17	2017-18 as on 30th Sept. 2017	Total
Bh (N)		Bh N / BLA OB site	5.20	2016-17	-	-	13000	4810	17810
Bh (S)		3 Pit OB site	4.78	2014-15	1218	39	1000	3040	16229
ASP Colliery	Patherdih Mix	COCP / Vrindavan Site	5.71	2015-16	-	6125	8150	4650	18925
		Kamini Kalyan Herbal garden	3.32	1980 (old)	375 (planted before 2014)	-	40	50	465
	Sudamdih	Mohalbani Site	3.95	2014-15	1087	' 4	1000	1950	13824
Cadamam		Sudamdih Incline / Gosaithan Site	3.10	2017-18			-	5925	5925
Amlabad		-	-	-			•		-
E.J. Area			26.06		23063	6125	23190	20425	73178

भारत कोर्किंग कोल लिमिटेड एक मिनीरत्न कंपनी (कोल इंडिया लिमिटेड का एक अंग) पंजीक्रत कार्यालय कोयला भवन ,कोयला नगर,

(धनबाद)झारखंड826005(CIN:U10101JH1972GOI000918 Tele: 0326 2230174 FAX: 0326 2230176

ईमेल :cgmsafety@bccl.gov.in

Bharat Coking Coal Limited A Miniratna Company (A subsidiary of Coal India Ltd) Office of GM I/C(S&R) Koyla Bhawan, Koyla Nagar, Dhanbad, Jharkhand-826005 CIN:U10101JH1972GOI000918 Tele: 0326 2230174 FAX: 0326

2230176 Email: cgmsafety@bccl.gov.in

पत्र संख्या भाकोकोलि/उप महाप्रबंधक(एस&आर)।/C/संचिका-MP/17 323

दिनांक-:07.04.2017

To, Dr, Vinod Kumar, Group Head, Geosciences group National Remote Sensing Center India Space Research Organization Dept of Space, Govt of India, Balanagar, Hyderabad - 500037

Sub:- Work -Order for "Delineation of Surface Coal Fire and associated Land Subsidence in Jharia Coalfield, Jharkhand using satellite based remote - sensing techniques"

Dear Sir.

Consequent upon competent approval of proposal on aforesaid subject and subsequent signing o MOU between BCCL and NRSC, the aforesaid work is awarded to NRSC for Rs.18,10500/- (Eighteen lac ten thousand five hundred) only, against 100% payment in advance subject to terms and conditions listed in MOU. As per agreed payment terms and Demand Note No. 07/2016-17,

You are therefore requested to initiate all necessary activities for commencing the subject work as early as possible.

Thanking you,

Yours anhfully,

General Manager I/C (S&R)

1. Director (T) P&P, BCCL- for kind information.

2. TS to CMD, BCCL - for kind information.

Sri Mithilesh Kumar, Sr.Mgr.(M),Safety.Deptt., KoylaBhawan

COAL / OB PROGRAMME 2017-18. YEARLY PRODUCTION PROGRAMME - UNIT-WISE, SEAM WISE, GRADE WISE, MONTH-WISE FOR THE YEAR 2017-2018.

Area- EJ Area Coal: 7.00 LTe. OB: 42.00 LM3

Area- EJ Area															Coal: 7.0	00 LTe.		OB: 42.00	LM3	
Year 2017-1	8																	(Coa	I in tonnes/	OB in cu.m.)
Mine	Seam	Grade	Target 2017-18	Apr	May	Jun	1st Qtr.	Jul	Aug	Sep	2nd Qtr	Oct	Nov	Dec	3rd Qtr	Jan	Feb	Mar	4th Qtr	Total
Undergrour	nd(Dept.)																			
Bhowra N	V	W-II	25600	2304	2304	2304	6912	1963	1963	1962	5888	2048	2048	2048	6144	2219	2218	2219	6656	25600
Bhowra S	IV (T)	W- IV	24200	2178	2178	2178	6534	1856	1855	1855	5566	1936	1936	1936	5808	2097	2097	2098	6292	24200
A/Total-U/G		Coal Prod.	49800	4482	4482	4482	13446	3819	3818	3817	11454	3984	3984	3984	11952	4316	4315	4317	12948	49800
Opencast (I	Dept.)																			
	IB	W-III	20000	1800	1800	1800	5400	1534	1533	1533	4600	1600	1600	1600	4800	1733	1732	1734	5200	20000
	IT/IM	W-IV	22500	2025	2025	2025	6075	1725	1725	1725	5175	1800	1800	1800	5400	1950	1950	1950	5850	22500
COCP	I	W-IV	10000	900	900	900	2700	767	767	766	2300	800	800	800	2400	867	866	867	2600	10000
		Coal	52500	4725	4725	4725	14175	4026	4025	4024	12075	4200	4200	4200	12600	4550	4548	4551	13650	52500
		OB	150000	13500	13500	13500	40500	11500	11500	11500	34500	12000	12000	12000	36000	13000	13000	13000	39000	150000
A/Total-O/C		Coal	52500	4725	4725	4725	14175	4026	4025	4024	12075	4200	4200	4200	12600	4550	4548	4551	13650	52500
		OB	150000	13500	13500	13500	40500	11500	11500	11500	34500	12000	12000	12000	36000	13000	13000	13000	39000	150000
A/G. Total		Coal	102300	9207	9207	9207	27621	7845	7843	7841	23529	8184	8184	8184	24552	8866	8863	8868	26598	102300
Dept. (O/C + U/G)		ОВ	150000	13500	13500	13500	40500	11500	11500	11500	34500	12000	12000	12000	36000	13000	13000	13000	39000	150000
Hired O.C.P																				
	IX / X	W-II	175000	15750	15750	15750	47250	13417	13417	13416	40250	14000	14000	14000	42000	15167	15166	15167	45500	175000
	XI/XII	W-II	148700	13383	13383	13383	40149	11401	11400	11400	34201	11896	11896	11896	35688	12887	12887	12888	38662	148700
3pit West	XIII	W-II	100000	9000	9000	9000	27000	7667	7667	7666	23000	8000	8000	8000	24000	8667	8666	8667	26000	100000
		Coal	423700	38133	38133	38133	114399	32485	32484	32482	97451	33896	33896	33896	101688	36721	36719	36722	110162	423700
		OB	3120000	280800	280800	280800	842400	239200	239200	239200	717600	249600	249600	249600	748800	270400	270400	270400	811200	3120000
	IV/IVB	W-IV	160000	14400	14400	14400	43200	12267	12267	12266	36800	12800	12800	12800	38400	13867	13866	13867	41600	160000
X-patch	VI	W-IV	14000	1260	1260	1260	3780	1074	1073	1073	3220	1120	1120	1120	3360	1214	1213	1213	3640	14000
x paton		Coal	174000	15660	15660	15660	46980	13341	13340	13339	40020	13920	13920	13920	41760	15081	15079	15080	45240	174000
		OB	930000	83700	83700	83700	251100	71300	71300	71300	213900	74400	74400	74400	223200	80600	80600	80600	241800	930000
A/Total		Coal	597700	53793	53793	53793	161379	45826	45824	45821	137471	47816	47816	47816	143448	51802	51798	51802	155402	597700
(Hired OCP)		OB	4050000	364500	364500	364500	1093500	310500	310500	310500	931500	324000	324000	324000	972000	351000	351000	351000	1053000	4050000
Department	al + Hired (
Area Total		Coal	700000	63000	63000	63000	189000	53671	53667	53662	161000	56000	56000	56000	168000	60668	60661	60670	182000	700000
(Dept+O/S)		OB	4200000	378000	378000	378000	1134000	322000	322000	322000	966000	336000	336000	336000	1008000	364000	364000	364000	1092000	4200000
QTRLY % (Co	TRLY% (COAL)			27				2	3			2	24			2	26			

COAL /OB PROGRAMME 2016 - 2017 YEARLY PRODUCTION PROGRAMME - UNIT-WISE / MONTH-WISE FOR 2016- 2017

Coal: 6.50 LTe. OB: 37.50 LM3

														Coal: 6.5	U LIG.		OB: 37.30	LIVIS
Area- EJ	Area																	
Year 2016	5-17												(Coal in '	000 tonnes	/OB in '000	cu.m.)		
Mine	Grade	Apr	May	Jun	1st Qtr.	Jul	Aug	Sep	2nd Qtr	Oct	Nov	Dec	3rd Qtr	Jan	Feb	Mar	4th Qtr	Total
Undergro	und(Dept.))																
Bhowra N	W-II	3.24	3.78	3.78	10.80	3.07	3.07	3.06	9.20	2.88	3.36	3.36	9.60	3.64	3.12	3.64	10.40	40.00
Bhowra S	W- III	2.42	2.84	2.84	8.10	2.30	2.30	2.30	6.90	2.16	2.52	2.52	7.20	2.73	2.34	2.73	7.80	30.00
ASP	W-IV	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Bhutgoria	W-IV	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A/Total-U/G	Coal Prod.	5.66	6.62	6.62	18.90	5.37	5.37	5.36	16.10	5.04	5.88	5.88	16.80	6.37	5.46	6.37	18.20	70.00
Opencast (Dept.)																		
СОСР	W-IV	4.86	5.67	5.67	16.20	4.60	4.60	4.60	13.80	4.32	5.04	5.04	14.40	5.46	4.68	5.46	15.60	60.00
COCF	ОВ	20.24	23.63	23.63	67.50	19.16	19.17	19.17	57.50	18.00	21.00	21.00	60.00	22.75	19.50	22.75	65.00	250.00
A/Total-O/C	Coal	4.86	5.67	5.67	16.20	4.60	4.60	4.60	13.80	4.32	5.04	5.04	14.40	5.46	4.68	5.46	15.60	60.00
A Total-0/0	OB	20.24	23.63	23.63	67.50	19.16	19.17	19.17	57.50	18.00	21.00	21.00	60.00	22.75	19.50	22.75	65.00	250.00
A/G.Total C	Coal	10.52	12.29	12.29	35.10	9.97	9.97	9.96	29.90	9.36	10.92	10.92	31.20	11.83	10.14	11.83	33.80	130.00
(O/C + U/G)	_	20.24	23.63	23.63	67.50	19.16	19.17	19.17	57.50	18.00	21.00	21.00	60.00	22.75	19.50	22.75	65.00	250.00
Hired O.C																		
C-1 Patch	ST-II	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	OB	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	W-I				0.00				0.00				0.00				0.00	0.00
3pit West		25.92	30.24	30.24	86.40	24.54	24.53	24.53	73.60	23.04	26.88	26.88	76.80	29.12	24.96	29.12	83.20	320.00
	OB	162.00	189.00	189.00	540.00	153.33	153.33	153.34	460.00	144.00	168.00	168.00	480.00	182.00	156.00	182.00	520.00	2000.00
X-patch	W-IV	16.20	18.90	18.90	54.00	15.34	15.33	15.33	46.00	14.40	16.80	16.80	48.00	18.20	15.60	18.20	52.00	200.00
A/Total	OB Coal	121.50	141.75	141.75	405.00	115.00	115.00	115.00	345.00	108.00	126.00	126.00	360.00	136.50	117.00	136.50	390.00	1500.00
(Hired		42.12	49.14	49.14	140.40	39.88	39.86	39.86	119.60	37.44	43.68	43.68	124.80	47.32	40.56	47.32	135.20	520.00
OCP)	ОВ	283.50	330.75	330.75	945.00	268.33	268.33	268.34	805.00	252.00	294.00	294.00	840.00	318.50	273.00	318.50	910.00	3500.00
•	ntal + Hirec	OCP																
Area Total		52.64	61.43	61.43	175.50	49.85	49.83	49.82	149.50	46.80	54.60	54.60	156.00	59.15	50.70	59.15	169.00	650.00
(Dept+O/S)		303.74	354.38	354.38	1012.50	287.49	287.50	287.51	862.50	270.00	315.00	315.00	900.00	341.25	292.50	341.25	975.00	3750.00
QTRLY %	(COAL)		27	7			23	3			2	4			20	6		

COAL /OB PROGRAMME 2015 - 2016 YEARLY PRODUCTION PROGRAMME - UNIT-WISE / MONTH-WISE FOR 2015 - 2016

Coal: 5.28 LTe. OB: 33.15 LM3
Area- EJ Area

Year 2015-16 Mine Grade Apr May Jun 1st Qtr. Jul Aug Sep 2nd Qtr Oct Nov Dec 3rd Qtr Jan Feb Mar 4th Qtr Total																		
Mine	Grade	Apr	May	Jun	1st Qtr.	Jul	Aug	Sep	2nd Qtr	Oct	Nov	Dec	3rd Qtr	Jan	Feb	Mar	4th Qtr	Total
Undergro	und(Dept.)															<u>.</u>	
Bhowra N	W-II	3.00	3.00	3.00	9.00	3.50	3.50	3.50	10.50	3.50	3.50	3.50	10.50	3.50	3.00	3.50	10.00	40.00
Bhowra S	W- III	2.50	2.50	2.50	7.50	2.50	2.50	2.50	7.50	2.50	2.50	2.50	7.50	2.50	2.50	2.50	7.50	30.00
ASP	W-IV	3.00	3.00	3.00	9.00	3.00	3.00	3.00	9.00	2.00	0.00	0.00	2.00	0.00	0.00	0.00	0.00	20.00
	W-IV	5.00	5.00	5.00	15.00	5.00	5.00	5.00	15.00	5.00	5.00	5.00	15.00	5.00	5.00	5.00	15.00	60.00
A/Total- U/G	Coal Prod.	13.50	13.50	13.50	40.50	14.00	14.00	14.00	42.00	13.00	11.00	11.00	35.00	11.00	10.50	11.00	32.50	150.00
Opencast (Dept.)																		
COCP	W-IV	5.00	5.00	5.00	15.00	5.00	5.00	5.00	15.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	30.00
0001	OB	15.00	15.00	15.00	45.00	15.00	15.00	15.00	45.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	90.00
BLA Patch	ST-II	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DLA Fatcii	ОВ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Coal	5.00	5.00	5.00	15.00	5.00	5.00	5.00	15.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	30.00
O/C	OB	15.00	15.00	15.00	45.00	15.00	15.00	15.00	45.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	90.00
A/G.Total C	Coal	18.50	18.50	18.50	55.50	19.00	19.00	19.00	57.00	13.00	11.00	11.00	35.00	11.00	10.50	11.00	32.50	180.00
(O/C + U/G)	ОВ	15.00	15.00	15.00	45.00	15.00	15.00	15.00	45.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	90.00
Hired O.C	.Р.	-																
C-1	ST-II	9.00	9.00	9.00	27.00	8.00	8.00	8.00	24.00	9.00	9.00	9.00	27.00	10.00	8.00	9.00	27.00	105.00
Patch	OB	60.00	60.00	60.00	180.00	65.00	65.00	65.00	195.00	65.00	65.00	65.00	195.00	60.00	60.00	60.00	180.00	750.00
	W-I	0.00	0.00	0.00	0.00	0.00	0.00	2.00	2.00	2.00	2.00	2.00	6.00	2.00	2.00	2.00	6.00	14.00
3pit West	W-II	10.00	10.00	10.00	30.00	12.00	12.00	10.00	34.00	12.00	11.00	11.00	34.00	11.00	11.00	11.00	33.00	131.00
	OB	100.00	100.00	100.00	300.00	110.00	110.00	110.00	330.00	110.00	110.00	110.00	330.00	100.00	100.00	100.00	300.00	1260.00
X-patch	W-IV	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00	3.00	10.00	15.00	28.00	22.00	22.00	25.00	69.00	98.00
	OB	0.00	0.00	0.00	0.00	0.00	0.80	170.00	170.80	170.00	175.00	175.00	520.00	175.00	175.00	175.00	525.00	1215.80
A/Total	Coal	19.00	19.00	19.00	57.00	20.00	20.00	21.00	61.00	26.00	32.00	37.00	95.00	45.00	43.00	47.00	135.00	348.00
(Hired OCP)	ОВ	160.00	160.00	160.00	480.00	175.00	175.80	345.00	695.80	345.00	350.00	350.00	1045.00	335.00	335.00	335.00	1005.00	3225.80
Departme	ntal + Hire	d OCP																
	Coal	37.50	37.50	37.50	112.50	39.00	39.00	40.00	118.00	39.00	43.00	48.00	130.00	56.00	53.50	58.00	167.50	528.00
(Dept+O/S)		175.00	175.00	175.00	525.00	190.00	190.80	360.00	740.80	345.00	350.00	350.00	1045.00	335.00	335.00	335.00	1005.00	3315.80
QTRLY %	(COAL)	·	21	I			22	2			25	5			32	2		

EASTERN JHARIA AREA - BHOWRA PRODUCTION PERFORMANCE 2017-18

UNIT	YEAR	APRIL	MAY	JUN	JULY	AUG	SEPT	Total
Bhowra (South) UG	Tar 2017-18	2178	2178	2178	1856	1855	1855	12100
, ,	Actual	1220	1418	1163	870	1109	835	6615
Bhowra(North) UG	Tar 2017-18	2304	2304	2304	1963	1963	1962	12800
	Actual	1362	1484	1351	1346	1105	994	7642
Deptt. UG Total	Tar 2017-18	4482	4482	4482	3819	3818	3817	24900
	Actual	2582	2902	2514	2216	2214	1829	14257
COCP(Path)	Tar 2017-18	4725	4725	4725	4026	4025	4024	26250
	Actual	70	0	910	686	3052	4256	8974
3 PIT West (A.T.)	Tar 2017-18	38133	38133	38133	32485	32484	32482	211850
	Actual	42224	41734	45248	35686	38340	41006	244238
X-Patch.	Tar 2017-18	15660	15660	15660	13341	13340	13339	87000
	Actual	20784	24432	18300	11760	15096	5700	96072
Dept Coal Total	Tar 2017-18	9207	9207	9207	7845	7843	7841	51150
	Actual	2652	2902	3424	2902	5266	6085	23231
Hired Coal Total	Tar 2017-18	53793	53793	53793	45826	45824	45821	298850
	Actual	63008	66166	63548	47446	53436	46706	340310
Total Coal	Tar 2017-18	63000	63000	63000	53671	53667	53662	350000
	Actual	65660	69068	66972	50348	58702	52791	363541

EASTERN JHARIA AREA - BHOWRA O.B.R. PERFORMANCE 2017-18.

UNITS		APRIL	MAY	JUN	JULY	AUG	SEPT	Total
COCP(Patherdih)	Tar 2017-18	18900	18900	18900	16100	16100	11500	100400
	Actual	5343	1188	4295	2436	2050	4020	19332.00
Dept.O/C Total.	Tar 2017-18	18900	18900	18900	16100	16100	11500	100400
	Actual	5343	1188	4295	2436	2050	4020	19332.00
3 PIT West (A.T.)	Tar 2017-18	266931	266931	266931	227386	227385	239200	1494764
	Actual	398013.29	369313.59	349345.44	274656.88	323620.36	272673.80	1987623.36
X-Patch.	Tar 2017-18	109620	109620	109620	93380	93380	71300	586920
	Actual	109617.90	120953.15	108570.70	68815.78	73034.78	23458.10	504450.41
Total Hired HEMM	Tar 2017-18	376551.00	376551.00	376551.00	320766.00	320765.00	310500.00	2081684
	Actual	507631.19	490266.74	457916.14	343472.66	396655.14	296131.90	2492073.77
Grand Total	Tar 2017-18	395451.00	395451.00	395451.00	336866.00	336865.00	322000.00	2182084
	Actual	512974.19	491454.74	462211.14	345908.66	398705.14	300151.90	2511405.77

EASTERN JHARIA AREA - BHOWRA PRODUCTION PERFORMANCE 2016-17

UNIT	YEAR	APRIL	MAY	JUN	JULY	AUG	SEPT	OCT	NOV	DEC.	JAN	FEB	MAR	Total
Bhowra (South) UG	Tar-16-17	2420	2840	2840	2300	2300	2300	2160	2520	2520	2730	2340	2730	30000
	Actual	2810	2302	2023	1767	1833	1541	1539	1845	1768	1649	1354	1243	21674
Bhowra(North) UG	Tar-16-17	3240	3780	3780	3070	3070	3060	2880	3360	3360	3640	3120	3640	40000
	Actual	2472	2193	2077	1985	2039	1976	1778	2047	1978	1816	1740	1241	23342
A.S.P(Incline)	Tar-16-17	0	0	0	0	0	0	0	0	0	0	0	0	0
	Actual	0	0	0	0	0	0	0	0	0	0	0	0	0
Deptt. UG Total	Tar-16-17	5660	6620	6620	5370	5370	5360	5040	5880	5880	6370	5460	6370	70000
	Actual	5282	4495	4100	3752	3872	3517	3317	3892	3746	3465	3094	2484	45016
COCP(Path)	Tar-16-17	4860	5670	5670	4600	4600	4600	4320	5040	5040	5460	4680	5460	60000
	Actual	1554	2968	4242	2268	448	210	1666	2520	3122	5306	3808	16926	45038
Dept.O/C Total.	Tar-16-17	4860	5670	5670	4600	4600	4600	4320	5040	5040	5460	4680	5460	60000
	Actual	1554	2968	4242	2268	448	210	1666	2520	3122	5306	3808	16926	45038
New C 1 Bh(N)	Tar-16-17	0	0	0	0	0	0	0	0	0	0	0	0	0
	Actual	0	0	0	0	0	0	0	0	0	0	0	0	0
3 PIT West (A.T.)	Tar-16-17	25920	30240	30240	24540	24530	24530	23040	26880	26880	29120	24960	29120	320000
	Actual	28980	32970	33754	31934	29400	30954	37408	32858	38458	45752	34426	36428	413322
X-Patch.	Tar-16-17	16200	18900	18900	15340	15330	15330	14400	16800	16800	18200	15600	18200	200000
	Actual	19188	17928	17952	16452	16320	15672	17616	19740	20196	21228	20496	18840	221628
Total Hired HHEMM	Tar-16-17	42120	49140	49140	39880	39860	39860	37440	43680	43680	47320	40560	47320	520000
OCP	Actual	48168	50898	51706	48386	45720	46626	55024	52598	58654	66980	54922	55268	634950
Deptt. Coal Total	Tar-16-17	10520	12290	12290	9970	9970	9960	9360	10920	10920	11830	10140	11830	130000
	Actual	6836	7463	8342	6020	4320	3727	4983	6412	6868	8771	6902	19410	90054
Area Total	Tar-16-17	52640	61430	61430	49850	49830	49820	46800	54600	54600	59150	50700	59150	650000
	Actual	55004	58361	60048	54406	50040	50353	60007	59010	65522	75751	61824	74678	725004

EASTERN JHARIA AREA - BHOWRA O.B.R. PERFORMANCE 2016-17.

UNITS		APRIL	MAY	JUN	JULY	AUG	SEPT	OCT	NOV	DEC.	JAN	FEB	MAR	Total
COCP(Patherdih)	Tar-16-17	20240	23630	23630	19160	19170	19170	18000	21000	21000	22750	19500	22750	250000
	Actual	5254	6830	6929	4759	3607	7898	6469	4859	5931	4654	6316	2589	66095.00
Dept.BH(N)	Tar-16-17	0	0	0	0	0	0	0	0	0	0	0	0	0
XV/XIVA	Actual	0	0	0	0	0	0	0	0	0	0	0	0	0.00
Dept.O/C Total.	Tar-16-17	20240	23630	23630	19160	19170	19170	18000	21000	21000	22750	19500	22750	250000
	Actual	5254.00	6830.00	6929.00	4759.00	3607.00	7898.00	6469.00	4859.00	5931.00	4654.00	6316.00	2589.00	66095.00
Hired HEMM - C1	Tar-16-17	0	0	0	0	0	0	0	0	0	0	0	0	0
	Actual	0	0	0	0	0	0	0	0	0	0	0	0	0.00
3 PIT West (A.T.)	Tar-16-17	162000	189000	189000	153330	153330	153340	144000	168000	168000	182000	156000	182000	2000000
	Actual	291993.46	402447.13	389938.18	371954.45	333370.48	321808	374595.89	398000.69	428999.79	402707.87	405514.34	401082.89	4522413.17
Hired HEMM	Tar-16-17	121500	141750	141750	115000	124730	115000	108000	126000	126000	136500	117000	136500	1509730
X-Patch.	Actual	175868.81	167306.25	155114.85	103181.29	109895.08	77586.63	117857.85	118430.25	96310.40	74236.23	137954.00	102617.53	1436359.17
Total Hired HEMM	Tar-16-17	283500.00	330750.00	330750.00	268330.00	278060.00	268340.00	252000.00	294000.00	294000.00	318500.00	273000.00	318500.00	3509730
	Actual	467862.27	569753.38	545053.03	475135.74	443265.56	399394.63	492453.74	516430.94	525310.19	476944.10	543468.34	503700.42	5958772.34
Grand Total	Tar-16-17	303740.00	354380.00	354380.00	287490.00	297230.00	287510.00	270000.00	315000.00	315000.00	341250.00	292500.00	341250.00	3759730
	Actual	473116.27	576583.38	551982.03	479894.74	446872.56	407292.63	498922.74	521289.94	531241.19	481598.10	549784.34	506289.42	6024867.34

WATER TREATMENT PLANT/ FILTER PLANT UNDER CLUSTER X, BHARAT COKING COAL LIMITED, DHANBAD

In cluster X (under Eastern Jharia area), there is three nos. of Rapid Gravity Pressure Filter plant of total 1.72 MGD capacity, which is used for supply of water in nearby colonies, houses, quarters. After treatment and filtration, treated water is supplied to nearby residents both employees and non employees peoples.

Effluent analysis is monitored by CMPDIL quarterly and gives environment monitoring report regularly for cluster X of BCCL. This report includes the effluent analysis report, air quality monitoring report, surface & ground water report and noise monitoring report.

Detail of Water Treatment Plant/ Filter Plant in E.J. Area are given below:

	Deta	ail of Water Tre	eatment Pla	nt/ Filter Pl	ant in E.J. Area
S.	Location of	Treatment	Capacity	In use	Supply of water
No.	source of water	method	(MGD)	(MGD)	
1	Sudamdih	Rapid gravity filter	0.8	0.47	Sudamdih colony, Patherdih colony, Patherdih Basti, Patherdih Basti, Supkar Basti, Hattala basti, etc
2	Bhowra	Rapid gravity filter	0.66	0.39	Gaurkhuti, 12 no. basti, 13 no.basti, 35 no. basti; 6 no. dhowra, Manjhi Basti, Gandhi Nagar, 19 no. Basti upar, 19 no. Basti niche, etc.
3	Amlabad	Rapid gravity filter	0.26	0.02	Amlabad colony and nearby basti

Encl.: i. Effluent analysis/ Env. Monitoring report of Q.E. Dec.2016

ii. Photos of different filter plants under cluster X

WATER QUALITY DATA

(EFFLUENT WATER-FOUR PARAMETERS)

Name of the Company: Bharat Coking Coal Year: 2016-17.

Limited

Name of the Cluster: Cluster - X Month: October, 2016.

Name of the Stations & Code : 1. MW10- Mine Discharge of

Bhowrah North

First Fortnight

SI. No.	Parameters	MW10 (Mine Discharge) 13.10.2016	As per MOEF&CC General Standards for schedule VI
1	Total Suspended Solids	44	100 (Max)
2	рН	8.37	5.5 - 9.0
3	Oil & Grease	<2.0	10 (Max)
4	COD	54	250 (Max)

Second Fortnight

SI. No.	Parameters	MW10 (Mine Discharge) 19.10.2016	As per MOEF&CC General Standards for schedule VI
1	Total Suspended Solids	40	100 (Max)
2	рН	8.53	5.5 - 9.0
3	Oil & Grease	<2.0	10 (Max)
4	COD	48	250 (Max)

All values are expressed in mg/lit unless specified.

Approved By Dy.Technical Manager Env. Lab, CMPDI (HQ),

(Authorized Signatory)

2 - (C 021)
Analysed By

WATER QUALITY DATA

(EFFLUENT WATER-FOUR PARAMETERS)

Name of the Company: Bharat Coking Coal Year: 2016-17.

Limited

Name of the Cluster: Cluster - X Month: November, 2016.

Name of the Stations & Code : 1. MW10- Mine Discharge of

Bhowrah North

First Fortnight

SI. No.	Parameters	MW10 (Mine Discharge)	As per MOEF&CC General Standards for schedule VI
		15.11.2016	
1	Total Suspended Solids	36	100 (Max)
2	рН	8.29	5.5 - 9.0
3	Oil & Grease	<2.0	10 (Max)
4	COD	46	250 (Max)

Second Fortnight

SI. No.	Parameters	MW10 (Mine Discharge) 23.11.2016	As per MOEF&CC General Standards for schedule VI
1	Total Suspended Solids	32	100 (Max)
2	рН	8.18	5.5 - 9.0
3	Oil & Grease	<2.0	10 (Max)
4	COD	42	250 (Max)

All values are expressed in mg/lit unless specified.

Analysed By

Approved By Dy.Technical Manager Env. Lab, CMPDI (HQ), (Authorized Signatory)

WATER QUALITY DATA

(EFFLUENT WATER-FOUR PARAMETERS)

Name of the Company: Bharat Coking Coal Year: 2016-17.

Limited

Name of the Cluster: Cluster - X Month: December, 2016.

Name of the Stations & Code : 1. MW10- Mine Discharge of

Bhowrah North

First Fortnight

SI. No.	Parameters	MW10 (Mine Discharge) 12.12.2016	As per MOEF&CC General Standards for schedule VI
1	Total Suspended Solids	28	100 (Max)
2	рН	8.81	5.5 - 9.0
3	Oil & Grease	<2.0	10 (Max)
4	COD	40	250 (Max)

Second Fortnight

SI. No.	Parameters	MW10 (Mine Discharge) 22.12.2016	As per MOEF&CC General Standards for schedule VI
1	Total Suspended Solids	24	100 (Max)
2	рН	8.94	5.5 - 9.0
3	Oil & Grease	<2.0	10 (Max)
4	COD	44	250 (Max)

All values are expressed in mg/lit unless specified.

Analysed By
JSA/SA/SSA

Checked By Lab Incharge Env. Lab, Ri-2, CMPDI

Approved By Dy.Technical Manager Env. Lab, CMPDI (HQ), (Authorized Signatory)

PHOTOGRAPHS SHOWING FILTER PLANTS IN CLUSTER X (EASTERN JHARIA AREA), BCCL, DHANBAD

A. Location of Filter Plant

B. Units of Filter Plant

C. Different units of Filter Plant

Fig.1: Sudamdih Filter Plant of Eastern Jharia Area, BCCL

A. Location of Filter Plant

B. Units of Filter Plant

C. Different units of Filter Plant

Fig.2: Amlabad Filter Plant of Eastern Jharia Area, BCCL

A. Location of Filter Plant

B. Units of Filter Plant

C. Different units of Filter Plant

Fig.3: Bhowra Filter Plant of Eastern Jharia Area, BCCL

STRICTLY RESTRICTED
FOR COMPANY USE ONLY

RESTRICTED

The information given in this report is not to be communicated either directly or indirectly to the press or to any person not holding an official position in the CIL/

GROUNDWATER LEVEL & QUALITY REPORT FOR CLUSTER OF MINES, BCCL

(Assessment year - 2016)

[CLUSTER - I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XIII, XIV, XV & XVI]

JHARIA COALFIELD AND RANIGANJ COALFIELD (PART)

(BHARAT COKING COAL LIMITED)

MARCH - 2017

Regional Institute – II

Central Mine Planning & Design Institute Ltd.

(An ISO 9001:2000 Company) (A Subsidiary of Coal India Ltd.) Koyla Bhawan Complex, Koyla Nagar DHANBAD – 826005

DETAILS OF THE REPORT

SI No.	ITEMS	INFORMATIONS
1	Geographical Area	Jharia Coalfield (JCF): 453 sq. km. Raniganj Coalfield (RCF part): 19.64 sq. km. (Cluster-XVI area only)
2	Major Physiographic Units	Dissected Pediplain with surface Reduced Level (RL) varies from 160 m to 220 m above mean sea level (AMSL) in JCF and 100 m to 140 m AMSL in RCF.
3	Drainage System	Damodar River is the master drainage flowing along western boundary of the JCF. Jamunia River, Khudia River, Katri River, Jarian Nala, Ekra Jore, Kari Jore, Kashi Jore, Chatkari Jore and their tributaries are flowing through the JCF area. Damodar River, Barakar River is the master drainage of the part of RCF area (CV Area).
4	Annual Rainfall	JCF and part of RCF area – 1509 mm (2016) (Dhansar Mine Rescue Station rainfall data)
5	Geological Formations	Gondwana Formation
6	Aquifer System	Top Unconfined/Phreatic Aquifer – average thickness 25 m Semi-confined to confined Aquifer – average thickness 50–200 m
7	Hydrogeological properties	Unconfined Aquifer (Damoda BJ Section & Block-III): Hydraulic Conductivity – upto 0.50 m/day Transmissivity – 10 - 42 m²/day Semi-confined to confined Aquifer (Sitanala & Kumari Block): Hydraulic Conductivity – 0.0006-1.44 & 0.05-0.0027 m/day Transmissivity – 0.06 – 0.573 m²/day
8	Groundwater Level Monitoring Network	Out of total 254 no of monitoring stations 64 nos located within core mining area and rest comes within Buffers zone. 60 Nos. of Groundwater monitoring well (Dug Wells) network is established by CMPDI to record groundwater level data in and around the Core Zone of JCF and 4 Nos. of Groundwater monitoring well (Dug Wells) in RCF (CV Area).
9	Groundwater Levels Below Ground Level (bgl)	JCF area: Pre-monsoon – 0.78 to 16.73 m (Avg. 5.64 m bgl) in '2016 Post-monsoon – 0.30 to 12.43 m (Avg. 3.19 m bgl) in '2016 RCF area (part): Pre-monsoon – 3.61 to 10.65 m (Avg. 6.24 m bgl) in '2016 Post-monsoon – 0.90 to 6.50 m (Avg. 3.18 m bgl) in '2016
10	Groundwater Quality	Potable
11	Proposed Piezometers	New piezometers (23 nos.) have been proposed to monitor impact of coal mining on groundwater regime within the coalfield area (JCF & part of RCF) for maximum depth upto 290 m to monitor deeper aquifers.

JOB NO – 200415006

1.0 INTRODUCTION

1.1 CLIMATE, TEMPERATURE & RAINFALL

The Jharia Coalfield (JCF) and part of Raniganj Coalfield (RCF) area in Dhanbad District belongs to sub-humid tropical climatic region. The maximum temperature during summer shoots upto 45° C and falls between 10° C to 5° C in winter. The maximum rainfall occurs during the period between June and September.

The annual rainfall in the area is 1509 mm (Dhansar Mine Rescue Station, 2016) has been considered in year 2016 given in **Annexure-I**. IMD stations nearby the Coalfield area are Dhanbad, Baghmara and Asansol. The mean non-monsoon rainfall in the area is 15% and the monsoon rainfall is 85% of total annual rainfall. Rainfall is the primary source of groundwater recharge.

1.2 GEOMORPHOLOGY

Northern part of the JCF area is covered with hills and thin forest. In general the altitude varies from 160 m above mean sea level (AMSL) in Sudamdih area to 220 m AMSL in Barora area. Pediplains are developed over sedimentary rocks or Gondwana formation consisting of Sandstone, Shale, coal, etc. Dissected pediplains are developed over Gondwana formations found in Jharia, Baghmara, Katras areas etc. However, in RCF (part) areas the altitude varies from 100 m to 140 m AMSL. The general slope of the topography is towards south, i.e. Damodar River.

JOB NO – 200416003 2

1.3 DRAINAGE

The drainage pattern of the area is dendritic in nature. The drainage system of the area is the part of Damodar sub-basin. All the rivers that originate or flow through the coalfield area have an easterly or south easterly course and ultimately joins Damodar River, the master drainage. The drainage of the JCF is mainly controlled by Jamuniya River (5th order), Khudia nala (3rd order), Katri River (4th) and Chatkari nala (3rd order) flowing from north to south and joins Damodar River. Whereas, Barakar River and Khudia River are controlling the drainage pattern of RCF (part) and joins Damodar River in the south. Damodar River is the main drainage channel and flows from west to east along the southern boundary of JCF and RCF.

The drainage map of the JCF and part of RCF has been prepared on topographic map of scale 1:50000 (**Figure No-1**). The watershed of all tributary rivers (Jamuniya River to Barakar River) falls within the north-western part of Damodar sub-basin which comes under Lower Ganga Basin.

Besides, a large number of ponds/tanks are distributed in and around JCF, out of which one prominent lake is located at Topchanchi in the north-west part. Two reservoirs, Maithon dam in Barakar River and Panchet dam in Damodar River near to Chanch Victoria Area of BCCL (part of RCF) are the main source of water supply to the nearby area. Jharia Water Board, Damodar Water Supply Scheme and Mineral Area Development Authority (MADA) are supplying water to the various coalfield area from Maithon dam, Damodar River, Jamunia River, Topchachi Lake, etc.

JOB NO – 200416003 3

2.0 GROUNDWATER SYSTEM

2.1 GEOLOGY OF THE AREA

The Jharia Coalfield covers an area of 453 sq. km. located in Dhanbad District, Jharkhand. The non-coal bearing Talchir Formation is exposed in patches along the northern fringe of the Coalfield. The Barakar Formation which overlies the Talchir is covering the most part of the Jharia Coalfield and having an area of 218 sq. km. This is successively overlain by the non-coal bearing Barren Formation which is mainly exposed in the central part of the Coalfield. This, in turn, is overlain by the Raniganj formation (Coal Bearing horizon) in the south-western part of the Coalfield and covers an area of 54 sq. km.

Chanch-Victoria Area which is located in the western part of Raniganj Coalfield. The Raniganj coalfield represents the eastern most coal basin in the Damodar Valley Region and located in Burdwan District, West Bengal. The Coalfield is almost elliptical in shape and covers an area of about 1530 sq. km. out of which only 35 sq. km. comes under leasehold area of BCCL out of which 19.64 sq. km is the study area (Cluster-XVI only). The coal bearing formations of the area belongs to Barakar Formation of the Lower Gondwana.

JOB NO – 200416003 4

2.2 HYDROGEOLOGY OF THE STUDY AREA

The permeable formations mainly composed of sandstone behave as aquifer units. The coal seam and shales developed in the area act as impermeable beds i.e. aquiclude. The aquifer materials of Gondwana Formation are constituted of fine to coarse grained sandstone having primary porosity of intergranular void space. The secondary porosity formed due to presence of faults, fracture, joints, etc. Sandstone of Gondwana formations in JCF and RCF are very hard, compact and cemented sandstone and forming less potential aquifer, particularly the deeper aquifer system. The secondary porosity along with primary porosity forms a conduit system making these formations good aquifers for movement and storage of ground water.

2.3 AQUIFER DISPOSITION

The aquifer system for shallow and deeper aquifer has been established through hydrogeological studies, exploration, surface and subsurface geophysical studies in the JCF and RCF (part) covering all geological formations. The aquifer can be divided into two zones – Un-confined/Phreatic (shallow) and Semi-confined to confined (deeper) aquifer.

PHREATIC/UN-CONFINED AQUIFER

The top aquifer occurred above the top most coal seam/shale bed is called unconfined or water table aquifer and it consists of relatively permeable formation such as weathered sandstone and loose soil. The thickness of the un-confined aquifer is varies from few meters to 50 m. This un-confined aquifer is more potential than deep seated semi-confined to confined aquifer.

SEMI-CONFINED TO CONFINED AQUIFER

The semi-confined to confined aquifer consisting of sandstone bed is sandwiched with coal seams/shale beds and multiple aquifer system developed due to presence of multiple numbers of coal seams/shale beds. With the presence of intercalated shale and carbonaceous shale beds and reduction in permeability with depth, the lower aquifers are poor in potential.

2.4 AQUIFER PARAMETERS

PHREATIC/UN-CONFINED AQUIFER – The wells are tested by CMPDI for determination of aquifer parameters in Damuda (BJ Section) and Block-III area of JCF. The hydraulic conductivity of the un-confined aquifer is 0.50 m/day as computed from pumping tests on the wells. The transmissivity of the unconfined aquifer ranges from 10.68 m²/day to 41.48 m²/day.

SEMI-CONFINED TO CONFINED AQUIFER – Below the un-confined aquifer, the sandstone partings in-between impervious layers of shale and coal seams is designated as semi-confined / confined aquifers. The sandstones in these aquifers are fine to coarse grained, hard and compact with very low porosity. Mostly groundwater occurs in the weak zones formed due to weathering, fracture, faults, which create the secondary porosity. The hydrogeological parameter has been determined by CMPDI in Sitanala Block by conducting aquifer performance test (APT). The hydraulic conductivity (K) of semi-confined aquifer in Barakar Formation ranges from 0.0006 m/day to 1.44 m/day. The hydrogeological parameter has also been determined at Kumari OCP Block in the central JCF by conducting aquifer performance test. The hydraulic conductivity (K) of semi-confined aquifer in Barakar Formation in this area ranges from 0.0027 m/day to 0.05 m/day.

3.0 GROUNDWATER LEVEL MONITORING

To collect the representative groundwater levels in the study area, CMPDI has established a monitoring network of total 254 monitoring stations out of which 64 located within core zone and rest comes within Buffer zone. 60 dug wells within JCF and 04 dug wells within RCF (part) area (Details of the Hydrograph stations & water level are given in **Annexure-IIA** & **IIB**) spread over the entire BCCL leasehold area, **Figure No-1**. Water level monitoring in 254 hydrograph stations has been done in pre-monsoon as well as in post monsoon whereas in 64 stations monitoring done in quarterly (February, May, August and November month of each year) basis.

Depth to water level of the water table depict the inequalities in the position of water table with respect to ground surface and is useful in delineating recharge / discharge areas, planning of artificial recharge structure and shows the overall status of the groundwater level in the area. Historical groundwater level (GWL) of entire JCF and part of RCF with fluctuation, GWL of Non-mining / Mining areas and GWL of the Cluster of Mines of BCCL are shown in this report to assess the effect of Coal mining activity in the groundwater regime in and around the Coalfield area.

Mining is a dynamic phenomenon. The mining activity creates dis-equilibrium in environmental scenario of the area and disturbs the groundwater conditions/regime in particular. The impact on shallow water regime due to mining activity can be broadly viewed as under:

- Historical GWL with annual fluctuation over the years
- GWL scenario in Non-mining and Mining area (OC/UG mines)
- GWL scenario of Cluster of mines of BCCL

^{*}Construction of piezometers within Jharia Coalfield and part of Raniganj Coalfield to monitor groundwater level of deeper aquifers is already in progress.

3.1 HISTORICAL GROUNDWATER LEVEL

Historical GWL of JCF and part of RCF are given from 2005 to 2016 of CMPDI monitoring stations (total 64 stations within Coalfield area). Pre-monsoon water level within JCF varies from 0.07 m to 19.27 m bgl with an average varying from 4.92 m to 6.29 m. The post-monsoon water level varies from 0.10 m to 15.88 m bgl with an average varying from 2.72 m to 4.48 m. The annual water level fluctuation varies from 0.02 m to 16.15 m bgl with an average varies from 1.54 m to 3.17 m.

Within RCF (part) pre-monsoon water level varies from 1.70 m to 10.50 m bgl with an average varying from 4.57 m to 7.59 m. The post-monsoon water level varies from 1.55 m to 9.58 m bgl with an average varying from 2.63 m to 5.11 m. The annual water level fluctuation varies from 0.54 m to 6.60 m bgl with an average varies from 0.89 m to 3.87 m.

Table No - 1: Historical Groundwater Level

				(Water I	evel in r	netre be	low ground	level)		
Pe	eriod	Pre-Mo	nsoon (April/May)	Post-M	onsoon	(Nov/Dec)	Fluctuation		
		From	То	Average	From	То	Average	From	То	Average
	2005	0.07	19.08	6.29	0.84	12.13	3.20	0.12	12.45	3.21
	2007	0.40	19.27	5.66	0.35	8.21	2.87	0.02	16.15	2.96
	2008	0.45	18.35	5.42	0.35	14.20	3.62	0.03	9.22	2.45
	2010	0.85	14.47	5.24	0.10	15.88	4.48	0.02	5.55	1.54
JCF	2012	1.27	18.68	5.58	0.15	7.80	2.72	0.08	13.45	2.96
	2013	0.70	19.20	5.65	0.45	8.35	2.77	0.29	15.88	3.17
	2014	0.70	16.28	4.92	0.75	14.98	3.27	0.25	10.15	2.17
	2015	1.38	17.20	6.00	0.45	14.58	3.92	0.28	7.62	2.15
	2016	0.78	16.73	5.64	0.30	12.43	3.19	0.23	6.35	2.88
	2008	5.02	10.50	7.59	2.85	4.90	3.71	1.82	6.60	3.87
	2010	2.20	8.85	4.74	2.78	9.58	4.63	0.68	1.10	0.89
5	2011	3.57	8.02	4.98	2.50	6.21	3.75	0.55	1.90	1.23
(part)	2012	3.10	7.34	4.59	1.55	7.00	3.66	0.05	2.78	0.94
RCF	2013	1.70	9.87	6.54	2.90	8.85	4.71	1.02	5.54	2.84
~	2014	3.27	6.48	4.57	2.13	3.03	2.63	0.54	3.45	1.94
	2015	3.38	9.52	5.33	2.68	8.20	5.11	1.06	1.32	1.81
	2016	3.61	10.65	6.24	0.90	6.50	3.18	1.63	4.40	3.06

3.2 GROUNDWATER LEVEL SCENARIO IN NON-MINING/MINING AREA

Depth to water level (DTW) range in different formations with respect of mining and non-mining areas is summarized in the Table No-2.

Table No – 2: Depth to water table

Formation	Area		DTW (bgl, m [Year-2016])	Average GWL (m)		
			Pre-monsoon	Post-monsoon			
					Pre-	Post-monsoon	
					monsoon		
Sedimentary	Non-mining		0.78 to 7.37	0.30 to 4.645	5.12	3.23	
(Gondwana)	Mining	OC	1.30 to 10.20	0.70 to 9.08	5.30	3.55	
		UG	1.50 to 16.73	1.10 to 12.43	7.21	4.89	
Metamorphics	Peripheral part of		0.50 to 14.00	0.30 to 11.30	7.25	4.50	
	the Coalfie	ld					

The study revealed that water table is in shallow depth and there is no significant stress in the water table due to coal mining activity. Mining and Non-mining areas shows barely any difference in water table condition in the JCF and RCF (part) area. The average hydraulic gradient of the water table within mining and non-mining areas is given in Table No-3. Flat hydraulic gradient has been observed within Non-Mining, Underground mines and Metamorphics areas w.r.t, Opencast mining areas. Relatively steep gradient near active opencast mining areas may be due to coal mining activity in addition with less rainfall in recent years within the study area.

Table No - 3: Average hydraulic gradient

SI.	Formation	Area		Average hydraulic gradient
No				
1	Sedimentary	Non-Mining		1.5 X 10 ⁻³ to 3.5 X 10 ⁻³
2	(Gondwana)	Mining	OC	7.75X 10 ⁻³ to 11.82 X 10 ⁻³
3			UG	2 X 10 ⁻³ to 5 X 10 ⁻³
4	Metamorphics	Peripheral	part of	1.0 X 10 ⁻³ to 3.0 X 10 ⁻³
		the Coalfiel	d	

3.3 QUARTERLY GROUNDWATER LEVEL, CLUATER OF MINES (BCCL)

3.3 A Monitoring of Ground Water Levels of Cluster-I

Cluster-I (Damuda Group of Mines) consisting of Damoda (BJ and Gutway section) UG, Damoda (Albion section) OCP, proposed Damoda (B.J.section) OCP and Closed Gutway OCP of Barora Area of BCCL. It is located in the extreme western part of JCF in Bokaro district of Jharkhand.

The present leasehold area of Cluster-I is 575 Ha. The Damoda block area is marked by more or less flat and gently undulating topography. The RL varies from 179 m to 208 m AMSL and the general slope of topography is towards east. Jamuniya River, Kari Jore, Podo Jore and its tributaries are controlling the drainage system of the area. The area comes under the watershed of Jamuniya River.

4 hydrograph stations (**B-15**, **B-21A**, **B51** and **B-53**) are located in the core zone of the mine area. Water level monitoring in these monitoring stations has been done in the months of February, April and August & November 2016 and the Ground water level data is enclosed in the table below:

SI	Well	Location	Water level (bgl in meters)					
No.	No.		Feb'16	Apr'16	Aug'16	Nov'16		
1	B-15	Bera Basti	0.55	1.85	0.40	0.55		
2	B-21A	Dugdha	6.45	5.55	1.45	4.50		
3	B-51	Taranga	3.20	4.90	1.03	3.18		
4	B-53	Karmatanr	3.47	4.62	-	1.37		
Ave	rage WL	. (bgl)	3.42	4.23	0.96	2.40		

Ground Water Level (in bgl) varies from 0.55 to 6.45 m during February'16, 1.85 to 5.55 m during April'16, 0.40 to 1.45 m during August'16 and 0.55 to 4.50 m during November'16 within the Core Zone of Cluster-I area.

3.3 B Monitoring of Ground Water Levels of Cluster-II

Cluster-II consists of seven mines namely; Block-II mixed mine (OCP & UGP), Jamunia OCP, Shatabdi OCP, Muraidih mixed mine (OCP & UGP) and Phularitand OCP is under administrative control of Block-II Area and Barora Area of BCCL. It is located in the extreme western part of Jharia Coalfield in Dhanbad district of Jharkhand.

The present leasehold area of Cluster-II is 2025.71 Ha. The Damoda block area is marked by more or less flat and gently undulating topography. The RL varies from 176 m to 235 m AMSL. Jamuniya River, Khudia River and its tributaries are controlling the drainage system of the area. The area comes under the watershed of Jamuniya River and Khudia River.

5 hydrograph stations (**B-1**, **B-59**, **B-60**, **B-61A** and **B-62A**) are located in the core zone of the mine area. Water level monitoring in these monitoring stations has been done in the months of February, April, August & November 2016 and the Ground water level data is enclosed in the table below:

SI	Well	Location	Water level (bgl in meters)					
No.	No.		Feb'16	Apr'16	Aug'16	Nov'16		
1	B-1	Muraidih	2.53	3.58	1.43	1.93		
2	B-59	Khodovaly	1.40	4.40	0.65	0.50		
3	B-60	Bahiyardih	6.78	9.36	1.48	5.03		
4	B-61A	Kesargora	5.36	6.58	1.09	3.87		
5	B-62A	Sadiyardih	6.85	9.30	2.85	4.95		
Ave	Average WL (bgl)			6.64	1.50	3.26		

Ground Water Level (in bgl) varies from 1.40 to 6.85 m during February, 3.58 to 9.36 m during April, 0.65 to 2.85 m during August and 0.50 to 5.03 m during November 2016 within the Core Zone of Cluster-II area.

3.3 C Monitoring of Ground Water Levels of Cluster-III

Cluster-III consists of nine mines namely, Jogidih UG, Maheshpur UG, South Govindpur UG, Teturiya UG, Govindpur UG, New Akashkinaree mixed mine (OC & UG) and Kooridih/Block-IV mixed mine (OC & UG) under the administrative control of Govindpur Area of BCCL. This Cluster of mines is located in western part of Jharia Coalfield in Dhanbad district of Jharkhand.

The present leasehold area of Cluster-III is 1420.0 Ha. The area is plain with gentle undulation with RL varies from 160 m to 208.80 m AMSL. The general slope of the area is towards south. Khudia River, Baghdihi Jore, Katri River and its tributaries are controlling the drainage system of the area. The area comes under the watershed of Khudia River.

5 hydrograph stations (A-12, A-25, A-29, B-14 and B-60) are located in the core zone of the mine area. Water level monitoring in these monitoring stations has been done in the months of February, April, August & November 2016 and the Ground water level data is enclosed in the table below:

SI	Well	Location	Wate	r level (bgl in m	eters)
No.	No.		Feb'16	Apr'16	Aug'16	Nov'16
1	A-12	Jamua	1.70	2.50	0.35	0.70
2	A-25	Sinidih	4.78	7.43	1.40	4.58
3	A-29	Dharmaband	3.95	5.92	1.54	6.96
4	B-14	Mathadih	1.92	2.44	1.26	0.47
5	B-60	Sonardih	6.31	10.33	2.21	5.03
Ave	Average WL (bgl)			5.72	1.35	3.65

Ground Water Level (in bgl) varies from 1.70 to 6.31 m during February, 2.50 to 10.33 m during April, 0.35 to 2.21 m during August and 0.70 to 6.96 m during November 2016 within the Core Zone of Cluster-III area.

3.3 D Monitoring of Ground Water Levels of Cluster-IV

Cluster-IV consists of six mines namely, Salanpur UG, Katras-Choitudih UG, Amalgamated Keshalpur & West Mudidih OC, Amalgamated Keshalpur & West Mudidih UG, Amalgamated Angarpathra & Ramkanali UG and closed Gaslitand UG of Katras Area of BCCL. It is located in the north-central part of Jharia Coalfield in Dhanbad district of Jharkhand.

The present leasehold area of Cluster-IV is 1123.79 Ha. The area has a general undulating topography, with an overall gentle south-westerly slope. The RL varies from 182 m to 216 m AMSL. Katri River, Kumari Jore and its tributaries are controlling the drainage pattern of the area. The area comes under the watershed of Katri River.

5 hydrograph stations (A-26, A28A, B-63, B-64 and B-65A) are located in the core zone of the mine area. Water level monitoring in these monitoring stations has been done in the months of February, April, August & November 2016 and the Ground water level data is enclosed in the table below:

SI	Well	Location	Water level (bgl in meters)				
No.	No.		Feb'16	Apr'16	Aug'16	Nov'16	
1	A-26	Malkhera	5.78	8.93	2.83	4.48	
2	A28A	Lakarka	2.15	3.35	1.22	1.47	
3	B-63	West Mudidih	1.35	2.44	0.95		
4	B-64	Keshalpur	1.35	2.35	0.35	0.55	
5	B-65A	Jhinjipahari	5.20	7.15	1.40	2.68	
Ave	Average WL (bgl)			4.84	1.35	2.30	

Ground Water Level (in bgl) varies from 1.35 to 5.78 m during February, 2.35 to 8.93 m during April, 0.35 to 2.83 m during August and 0.55 to 4.48 m during November 2016 within the Core Zone of Cluster-IV area.

3.3 E Monitoring of Ground Water Levels of Cluster-V

Cluster-V consists of twelve mines namely; Tetulmari OC & UG mine, Mudidih OC & UG mine, Nichitpur OC, Sendra Bansjora OC & UG, Bansdeopur OCP (proposed) & UG, Kankanee OC & UG and closed Loyabad UG under the administrative control of Sijua Area of BCCL. This Cluster of mines is located in northern part of Jharia Coalfield in Dhanbad district of Jharkhand.

The present leasehold area of Cluster-V is 1957.08 Ha. The area has a general undulating topography, with an overall gentle south westerly slope. The RL varies from 210 m to 170 m AMSL. Jarian Nala, Nagri Jore, Ekra Jore and its tributaries are controlling the drainage pattern of the area. The area comes under the watershed of Jarian Nala and Ekra Jore.

4 hydrograph stations (A-3, A-16, A-27 and D-23) are located in the core zone of the mine area. Water level monitoring in these monitoring stations has been done in the months of February, April, August & November 2016 and the Ground water level data is enclosed in the table below:

SI	Well	Location	Wate	r level (bgl in m	eters)
No.	No.		Feb'16	Apr'16	Aug'16	Nov'16
1	A-3	Sijua	3.02	4.87	0.20	0.47
2	A-16	Ekra	4.40	5.85	1.75	3.15
3	A-27	Tetulmari	2.40	4.85	0.40	1.80
4	D-23	Jogta	3.51	5.70	2.35	1.63
Average WL (bgl)			3.33	5.32	1.18	1.76

Ground Water Level (in bgl) varies from 2.40 to 4.40 m during February, 4.85 to 5.85 m during April, 0.20 to 2.35 m during August and 0.47 to 3.15 m during November 2016 within the Core Zone of Cluster-V area.

14 JOB NO - 200416003

3.3 F Monitoring of Ground Water Levels of Cluster-VI

Cluster–VI consists of four coal mines; East Bassuriya OC, Bassuriya UG, Gondudih Khas-Kusunda OC, Godhur Mixed Mines (OC and UG) are under the administrative control of Kusunda Area of BCCL. This Cluster of mines is located in central part of Jharia Coalfield in Dhanbad district of Jharkhand.

The present leasehold area of Cluster-VI is 876.55 Ha. The area has a general undulating topography with general slope towards south. The RL varies from 180 m to 240 m AMSL. Ekra Jore, Kari Jore and their tributaries are controlling the drainage pattern of the area. The area comes under the watershed of Ekra Jore and Kari Jore.

2 hydrograph stations (**D-25 and D-30**) are located in the core zone of the mine area. Water level monitoring in these monitoring stations has been done in the months of February, April, August & November 2016 and the Ground water level data is enclosed in the table below:

SI	Well	Location	- (-3					
No.	No.		Feb'16	Apr'16	Aug'16	Nov'16		
1	D-25	Godhur	2.10	2.40	0.25	1.90		
2	D-30	Borkiboa	3.32	4.45	1.10	3.20		
Average WL (bgl)			2.71	3.43	0.68	2.55		

3.3 G Monitoring of Ground Water Levels of Cluster-VII

Cluster-VII consists of fourteen mines namely; Dhansar mixed mine, Kusunda OCP, Viswakarma OCP, Industry UG (closed), Alkusa UG, Ena OCP, S.Jharia/Rajapur OCP, Burragarh UG, Simlabahal UG, Hurriladih UG, Bhutgoria UG, Kustore UG (closed) and E.Bhuggatdih UG (closed) under the administrative control of Kusunda Area and Kustore Area of BCCL. This Cluster of mines is located in east central part of Jharia Coalfield in Dhanbad district of Jharkhand.

The present leasehold area of Cluster-VII is 2127.70 Ha. The area has a general undulating topography with general slope towards south. The RL varies from 172 m to 221 m above M.S.L. Kari Jore, Chatkari Jore and its tributaries are controlling the drainage pattern of the area. The area comes under the watershed of Kari Jore and Chatkari Jore.

7 hydrograph stations (**D-3**, **D-4**, **D-33**, **D-34**, **D-47**, **D-55** and **D-80**) are located in the core zone of the mine area. Water level monitoring in these monitoring stations has been done in the months of February, April, August & November 2016 and the Ground water level data is enclosed in the table below:

SI	Well	Location	Water level (bgl in meters)					
No.	No.		Feb'16	Apr'16	Aug'16	Nov'16		
1	D-3	Dhansar	2.10	2.35	1.20	1.90		
2	D-4	Jharia	1.01	1.21	0.41	1.36		
3	D-33	Kustore	1.00	2.50	0.20	1.95		
4	D-34	Kusunda	0.75	2.30	0.22	0.30		
5	D-47	Parastanr	3.05	3.18	3.35	2.95		
6	D-55	Hariladih	2.72	2.52	1.62	3.62		
7	D-80	Bastacolla	3.63	6.55	2.05	4.15		
Ave	Average WL (bgl)			2.94	1.29	2.32		

Ground Water Level (in bgl) varies from 0.75 to 3.63 m during February, 1.21 to 6.55 m during April, 0.20 to 3.35 m during August and 0.30 to 4.15 m during November 2016 within the Core Zone of Cluster-VII area.

3.3 H Monitoring of Ground Water Levels of Cluster-VIII

Cluster-VIII consists of ten mines namely; Bastacolla mixed mines (OC & UG), Bera mixed mines (OC & UG), Dobari UG, Kuya mixed (OC & UG), proposed Goluckdih (NC) OC, Ghanoodih OC and Kujama OC under the administrative control of Bastacolla Area of BCCL. This Cluster of mines is located in eastern part of Jharia Coalfield in Dhanbad district of Jharkhand.

The present leasehold area of Cluster-VIII is 1200.41 Ha. The area has a general undulating topography with general slope towards south and south-west. The ground elevation in the area ranges from 175 m to 221 m AMSL. Chatkari Jore, Tisra Jore and its tributaries controlling the drainage pattern of the area. The area comes under the watershed of Chatkari Jore.

4 hydrograph stations (**D-8, D-43, D-49 and D-51**) are located in the core zone of the mine area. Water level monitoring in these monitoring stations has been done in the months of February, April, August & November 2016 and the Ground water level data is enclosed in the table below:

SI	Well	Location	Wate	r level (bgl in m	eters)
No.	No.		Feb'16	Apr'16	Aug'16	Nov'16
1	D-8	Alokdiha	4.65	8.00	2.70	3.43
2	D-43	Alagdih	4.17	8.20	1.90	3.35
3	D-49	Galucdih	2.00	2.45	0.28	1.72
4	D-51	Chankuiya	8.80	11.15	3.58	6.45
Average WL (bgl)			4.91	7.45	2.12	3.74

Ground Water Level (in bgl) varies from 2.0 to 8.80 m during February, 2.45 to 11.15 m during April, 0.28 to 3.58 m during August and 1.72 to 6.45 m during November 2016 within the Core Zone of Cluster-VIII area.

3.3 I Monitoring of Ground Water Levels of Cluster-IX

Cluster-IX consists of eight mines namely; North Tisra/South Tisra Expansion OCP, Lodna UG, Bagdigi UG, Bararee UG and Joyrampur UG and Jealgora UG (closed) are under the administrative control of Lodna Area of BCCL. This Cluster of mines is located in eastern part of Jharia Coalfield in Dhanbad district of Jharkhand.

The present leasehold area of Cluster-IX is 1942.12 Ha. The topography of the area is undulating with gentle slope towards south. The RL varies from 221 m to 188.44 m AMSL. Chatkari Jore, Tisra Jore, Sulunga Jore and its tributaries controlling the drainage pattern of the area. The area comes under the watershed of Chatkari Jore.

6 hydrograph stations (**D-5**, **D-7**, **D-39**, **D-40A**, **D-41** and **D-74**) are located in the core zone of the mine area. Water level monitoring in these monitoring stations has been done in the months of February, April, August & November 2016 and the Ground water level data is enclosed in the table below:

SI	Well	Location	Water level (bgl in meters)			
No.	No.		Feb'16	Apr'16	Aug'16	Nov'16
1	D-5	Jiyalgora	7.54	9.40	2.20	6.40
2	D-7	Golden Pahari	5.63	7.53	1.63	4.03
3	D-39	Tilaboni	2.15	2.18	1.55	2.65
4	D-40A	Khapa Dhawra	0.70	1.40	0.45	0.85
5	D-41	Joyrampur	1.30	1.30	0.45	1.52
6	D-74	Bhulan Bararee	5.95	7.73	2.60	5.00
Ave	Average WL (bgl)			4.92	1.48	3.41

Ground Water Level (in bgl) varies from 0.70 to 7.54 m during February, 1.30 to 9.40 m during April, 0.45 to 2.60 m during August and 0.85 to 6.40 m during November 2016 within the Core Zone of Cluster-IX area.

3.3 J Monitoring of Ground Water Levels of Cluster-X

Cluster-X consists of ten coal mines and one coal Washery namely; Bhowrah North mixed mines (UG & OC), Bhowrah South mixed mines (UG, 3 Pit OCP, Chandan OCP), Patherdih Mixed mines (UG, Chandan OCP), Sudamdih incline UG mine, Sudamdih Shaft UG mine, Amlabad UG (Closed) and Sudamdih Coal Washery under the administrative control of Eastern Jharia Area of BCCL. This cluster of mines is located in the eastern part of Jharia Coalfield in Dhanbad district of Jharkhand.

The present leasehold area of Cluster-X is 2057.47 Ha. The area has an undulating topography with gentle slope towards south and south east. The RL varies from 185 m to 150.0 m AMSL. Gaurkuthi Nala and few seasonal streams are controlling the drainage pattern of the area. The area comes under the watershed of Damodar River.

4 hydrograph stations (A-19, D-35, D-36 and D-77) are located in the core zone of the mine area. Water level monitoring in these monitoring stations has been done in the months of February, April, August & November 2016 and the Ground water level data is enclosed in the table below:

SI	Well	Location	Location Water level (bgl in meters)							
No.	No.		Feb'16	Apr'16	Aug'16	Nov'16				
1	A-19	Bhowrah	4.75	8.10	1.35	4.40				
2	D-35	Patherdih	7.22	9.52	2.53	6.45				
3	D-36	Sudamdih	0.46	0.78	0.25	0.95				
4	D-77	Amlabad	3.75	4.60	2.49	2.90				
Ave	rage W	/L (bgl)	4.05	5.75	1.66	3.68				

Ground Water Level (in bgl) varies from 0.46 to 7.22 m during February, 0.78 to 9.52 m during April, 0.25 to 2.53 m during August and 0.95 to 6.45 m during November 2016 within the Core Zone of Cluster-X area.

3.3 K Monitoring of Ground Water Levels of Cluster-XI

Cluster–XI consists of eight coal mines and one coal Washery namely; Gopalichak UG Project, Kachi Balihari 10/12 Pit UG, Pootkee Balihari Project UG, Bhagaband UG, Kendwadih UG (closed), Pootkee UG (closed), Kachi Balihari 5/6 Pit UG (closed) are under the administrative control of Pootkee Balihari Area and Moonidih UG & Moonidih Washery are under the administrative control of Western Jharia Area of BCCL. This Cluster of mines is located in central part of Jharia Coalfield in Dhanbad district of Jharkhand.

The present leasehold area of Cluster-XI is 3527.58 Ha. The area has an undulating topography with gentle slope towards south. The RL varies from 201 m to 166 m AMSL. Katri River, Jarian Nala, Ekra Jore and Kari Jore are controlling the drainage of the area. The area comes under the watershed of Katri River and Kari Jore.

5 hydrograph stations (A-17, A-18, A-20, A-32 and D-34) are located in the core zone of the mine area. Water level monitoring in these monitoring stations has been done in the months of February, April, August & November 2016 and the Ground water level data is enclosed in the table below:

SI	Well	Location	Location Water below (bgl in met					
No.	No.		Feb'16	Apr'16	Aug'16	Nov'16		
1	A-17	Kachi Balihari	2.31	2.44	0.37	2.69		
2	A-18	Baghaband	0.74	1.14	1.84	0.89		
3	A-20	Gorbudih	4.60	7.49	1.07	3.50		
4	A-32	Baludih	2.99	4.75	0.65	2.10		
5	A-34	Bhatdih	4.54	4.75	1.55	4.45		
Ave	rage G	W (bgl)	3.04	4.11	1.10	2.73		

Ground Water Level (in bgl) varies from 0.74 to 4.60 m during February, 1.14 to 7.49 m during April, 0.37 to 1.84 m during August and 0.89 to 4.45 m during November 2016 within the Core Zone of Cluster-XI area.

3.3 L Monitoring of Ground Water Levels of Cluster-XIII

Cluster-XIII consists of one operating mine i.e. Murulidih 20/21 pits UG mine and six abandoned mines (Bhurungiya Colliery, Muchraidih colliery, Hantoodih colliery, Padugora colliery, Murulidih colliery, Bhatdee colliery) of Western Jharia Area of BCCL. It is located in the south-western part of Jharia Coalfield in Dhanbad district of Jharkhand.

The present leasehold area of Cluster-XIII is 1898.62 Ha. The area has an undulating topography with gentle slope towards south-east. The maximum RL is 224 m AMSL in the north-western part of the area whereas the minimum RL is 179 m AMSL at southern part. The area comes under the watershed area of Jamunia River and Katri River.

5 hydrograph stations (A-22, A-23, A-33, B-25 and B-48) are located in the core zone of the mine area. Water level monitoring in these monitoring stations has been done in the months of February, April, August & November 2016 and the Ground water level data is enclosed in the table below:

SI	Well	Location	Water level (bgl in meters)						
No.	No.		Feb'16	Apr'16	Aug'16	Nov'16			
1	A-22A	Nagdah Basti	2.00	3.25	0.40	1.75			
2	A-23	Machhayara	8.83	11.87	2.99	8.13			
3	A-33	Mahuda Washery	3.43	5.75	0.60	2.60			
4	B-25	Mahuda More	4.53	7.90	1.79	2.55			
5	B-48	Mahuda	5.35	9.35	2.03	4.60			
Ave	rage GV	V (bgI)	4.83	7.62	1.56	3.93			

Ground Water Level (in bgl) varies from 2.00 to 8.83 m during February, 3.25 to 11.87 m during April, 0.40 to 2.99 m during August and 1.75 to 8.13 m during November 2016 within the Core Zone of Cluster-XIII area.

JOB NO - 200416003 21

3.3 M Monitoring of Ground Water Levels of Cluster-XIV

Cluster-XIV consists of two mines namely; Lohapatty UG and Lohapatty Opencast Patch (proposed). These are under the administrative control of Western Jharia of BCCL. This Cluster of mines is located in western part of Jharia Coalfield in Dhanbad district of Jharkhand.

The present leasehold area of Cluster-XIV is 1577.22 Ha. The topography of the area is undulating with slope towards south west. The maximum RL is 224 m in the north-eastern part whereas the minimum RL is 170 m above mean sea level on the south-western part of the area. Jamunia River and its tributaries are controlling the drainage of the area. The area comes under the watershed area of Jamunia River.

3 hydrograph stations (**B-23**, **B-24** and **B-67**) are located in the core zone of the mine area. Water level monitoring in these monitoring stations has been done in the months of February, April, August & November 2016 and the Ground water level data is enclosed in the table below:

SI	Well	Location	Location Water level (bgl in meters)								
No.	No.		Feb'16	Apr'16	Aug'16	Nov'16					
1	B-23	Lohapatti	3.32	6.81	1.09	2.41					
2	B-24	Telmuchu	6.33	10.63	1.73	4.28					
3	B-67	Simatanr	7.45	9.53	3.47	4.30					
Ave	rage G	W (bgl)	5.70	8.99	2.10	3.66					

Ground Water Level (in bgl) varies from 3.32 to 7.45 m during February, 6.81 to 10.63 m during April, 1.09 to 3.47 m during August and 2.41 to 4.30 m during November 2016 within the Core Zone of Cluster-XIV area.

3.3 N Monitoring of Ground Water Levels of Cluster-XV

Cluster–XV consists of four coal mines; Kharkharee UG and Dharmaband UG are under the administrative control of Govindpur Area and Madhuband UG & Phularitand UG are under the administrative control of Barora Area of BCCL. This Cluster of mines is located in western part of Jharia Coalfield in Dhanbad district of Jharkhand.

The present leasehold area of Cluster-XV is 1696.55 Ha. The topography of the area is undulating with slope towards south west. The maximum RL is 235 m in the Kharkharee mine area whereas the minimum RL is 165 m AMSL on the eastern & western part of the Cluster. Jamunia River and Khudia River are controlling the drainage of the area. The area comes under the watershed area of both Jamunia River and Khudia River.

3 hydrograph stations (A-24, B-32A and B-61A) are located in the core zone of the mine area. Water level monitoring in these monitoring stations has been done in the months of February, April, August & November 2016 and the Ground water level data is enclosed in the table below:

SI	Well	Location	Water level (bgl in meters)				
No.	No.		Feb'16	Apr'16	Aug'16	Nov'16	
1	A-24	Pipratanr	12.80	16.73	2.48	12.43	
2	B-32A	Madhuband	4.20	6.95	1.54	3.07	
3	B-61A	Kesargora	5.48	6.58	1.09	3.87	
Ave	rage GV	V (bgI)	7.49	10.09	1.70	6.46	

Ground Water Level (bgl) varies from 4.20 to 12.80 m during February, 6.58 to 16.73 m during April, 1.09 to 2.48 m during August and 3.07 to 12.43 m during November 2016 within the Core Zone of Cluster-XV area.

3.3 O Monitoring of Ground Water Levels of Cluster-XVI

Cluster-XVI consists of five mines namely, Dahibari-Basantimata OC, Basantimata UG, New Laikidih OC, Laikdih Deep UG and Chunch UG under the administrative control of Chanch-Victoria Area of BCCL. This cluster of mines is located in the western part of Raniganj Coalfield in Dhanbad district of Jharkhand.

The present leasehold area of Cluster-XVI is 1964.21 Ha. The topography of the area is undulating with slope towards south west. The area is plain with gently undulating with elevation varying from 100 m to 140 m AMSL. The general slope of the area is towards southeast. Barakar River and Khudia River are controlling the drainage of the area. The area comes under the watershed area of Barakar River.

4 hydrograph stations (**DB-22**, **DB-23**, **DB-24** and **DB-25**) are located in the core zone of the mine area. Water level monitoring in these monitoring stations has been done in the months of February, April, August & November 2016 and the Ground water level data is enclosed in the table below:

SI	Well	Location	Water level (bgl in meters)					
No.	No.		Feb'16	Apr'16	Aug'16	Nov'16		
1	DB-22	Dahibari, Niche Basti	3.63	5.38	1.13	3.33		
2	DB-23	Dahibari OC	4.26	5.30	0.53	0.90		
3	DB-24	Dahibari	8.40	10.65	1.70	6.50		
4	DB-25	Palasya	3.33	3.61	1.28	1.98		
Ave	rage GV	/ Level	4.91	6.24	1.16	3.18		

Ground Water Level (in bgl) varies from 3.33 to 8.40 m during February, 3.61 to 10.65 m during April, 0.53 to 1.70 m during August and 0.90 to 6.50 m during November 2016 within the Core Zone of Cluster-XVI area.

4.0 GROUNDWATER LEVEL SCENARIO

During the month of February'2016 the depth to water level (in bgl) within 15 nos Cluster of mines varies from 0.46 m to 12.80 m with an average varies from of 2.04 m to 7.49 m. During the month of April'2016 the depth to water level varies from 0.78 m to 16.73 m with an average varies from 2.94 m to 10.09 m. During the month of August'2016 the depth to water level varies from 0.20 m to 3.58 m with an average varies from 0.68 m to 2.12 m. During the month of November'2016 the depth to water level varies from 0.30 m to 12.43 m with an average varies from 1.76 m to 6.46 m. The summarized water level data of all clusters are given in **Table No – 4**.

Depth to water level (in bgl) values described that water level goes down to maximum 16.73 m during pre-monsoon'2016 and maximum upto 12.43 m during post-monsoon'2016. Un-confined aquifer is affected around 20 m to 30 m maximum close to active opencast mining areas, showing steep gradient towards mine void. Other than that, there is no mining effect in the water level within JCF area and RCF area (part). Historical water level data and hydrograph of permanent observation stations from CGWB shown in **Annexure-III**.

Monitoring groundwater (quantity & quality) to assess the present condition and resource has been done regularly in the coalfield areas. Well hydrographs (Annexure–III) are prepared and studied to identify potentially adverse trends so that appropriate action can be taken to protect groundwater resource. According to the hydrograph trend analysis of CGWB monitoring wells, no significant decline trend of water level is noticed in any particular area for the last 10 years within the coalfield area. Regarding quality monitoring, the water sample location map (Figure No–2) with collection points details (dug wells) are given in Annexure–IV.

Table No-4: Groundwater level data Cluster-wise

SI. No.	Cluster of BCCL	No. of Monitoring Wells	Water level fluctuation Below ground level (Feb, Apr, Aug & Nov'16)	Formation
1	I	4 nos.	0.40 to 6.45 m	Barakar
2	II	5 nos.	0.50 to 9.36 m	Barakar
3	III	5 nos.	0.35 to 10.33 m	Barakar
4	IV	5 nos.	0.35 to 8.93 m	Barakar
5	V	4 nos.	0.20 to 5.70 m	Barakar
6	VI	2 nos.	0.25 to 4.45 m	Barakar
7	VII	6 nos.	0.20 to 6.55 m	Barakar
8	VIII	4 nos.	0.28 to 11.15 m	Barakar
9	IX	6 nos.	0.45 to 9.40 m	Barakar
10	Х	4 nos.	0.25 to 9.52 m	Barakar
11	ΧI	5 nos.	0.65 to 7.49 m	Barakar & Barren Measure
12	XIII	5 nos.	0.40 to 11.87 m	Raniganj
13	XIV	3 nos.	1.09 to 10.63 m	Raniganj
14	XV	4 nos.	1.09 to 16.73 m	Barakar & Barren Measure
15	XVI	4 nos.	0.53 to 10.65 m	Barakar

5.0 **GROUNDWATER QUALITY**

The ground water sample of the study area (15 nos. of Cluster of mines, BCCL) have been collected from dug wells and analysed. Fifteen ground water samples (GW-1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15 & 16) were analysed quarterly (February, May, August and November'2016) at CMPDI (HQ), Ranchi. The water sampling details are given in Annexure-IV and Water sample locations are shown in Figure No-2. The water quality data are enclosed in **Annexure–VA**, **VB**, **VC** and **VD**.

The study of the variations in water quality parameters are described below:

During the month of February, May, August and November'2016:

The pH of the groundwater samples varies between 7.56 to 8.26 in February'16, 7.10 to 8.31 in May'16, 6.16 to 8.27 in August'16 and 7.85 to 8.57 in November'16. The pH is within the ISI standards of drinking water except in Cluster-VIII during November'16.

During the month of February, May, August and November'2016:

The mineral constituents dissolved in water constitute the dissolved solids. The total dissolve solids varies from 388 to 910 mg/l in February'16, from 370 to 1070 in May'16, from 320 to 1060 in August'16 and from 276 to 902 in November'2016. The TDS values are above the IS 10500 standards of drinking water.

During the month of February, May, August and November'2016:

During the month of February'16 the alkalinity of the water samples varies from 84 to 372 mg/l and are slightly above the stipulated standard of (200 mg/l) drinking water. The concentrations of calcium in the water samples vary from 40 to 122 mg/l and are slightly above the permissible limit (75 mg/l) of drinking water standards. The total hardness ranges between 156 to 616 mg/l and the value of total hardness in water samples are above the permissible limit (200 mg/l). The sulphate ranges between 66 to 178 mg/l and the value of sulphate in water sample are within the permissible limit (200 mg/l). The Iron, Copper, Manganese, Lead, Zinc and Chromium concentration in the water samples are found to be below the upper ISI limits for drinking water.

JOB NO - 200416003 27

During the month of May'16 the alkalinity of the water samples varies from 80 to 504 mg/l and are above the stipulated standard of (200 mg/l) drinking water. The concentrations of calcium in the water samples vary from 42 to 133 mg/l and are slightly above the permissible limit (75 mg/l) of drinking water standards. The total hardness ranges between 176 to 724 mg/l and the value of total hardness in water samples are above the permissible limit (200 mg/l). The sulphate ranges between 52 to 230 mg/l and the value of sulphate in water sample are slightly above the permissible limit (200 mg/l). The Iron, Copper, Manganese, Lead, Zinc and Chromium concentration in the water samples are found to be below the upper ISI limits for drinking water.

During the month of August'16 the alkalinity of the water samples varies from 80 to 432 mg/l and are above the stipulated standard of (200 mg/l) drinking water. The concentrations of calcium in the water samples vary from 46 to 110 mg/l and are slightly above the permissible limit (75 mg/l) of drinking water standards. The total hardness ranges between 172 to 496 mg/l and the value of total hardness in water samples are above the permissible limit (200 mg/l). The sulphate ranges between 60 to 224 mg/l and the value of sulphate in water sample are slightly above the permissible limit (200 mg/l). The Iron, Copper, Manganese, Lead, Zinc and Chromium concentration in the water samples are found to be below the upper ISI limits for drinking water.

During the month of November'16 the alkalinity of the water samples varies from 32 to 408 mg/l and are slightly above the stipulated standard of (200 mg/l) drinking water. The concentrations of calcium in the water samples vary from 34 to 115 mg/l and are slightly above the permissible limit (75 mg/l) of drinking water standards. The total hardness ranges between 120 to 780 mg/l and the value of total hardness in water samples are above the permissible limit (200 mg/l). The sulphate ranges between 41 to 260 mg/l and the value of sulphate in water sample are within the permissible limit (200 mg/l). The Iron, Copper, Manganese, Lead, Zinc and Chromium concentration in the water samples are found to be below the upper ISI limits for drinking water.

6.0 STAGE OF GROUNDWATER DEVELOPMENT

The groundwater is mainly utilized for domestic needs and for irrigation purposes. The groundwater abstraction is mainly through dug wells and bore wells. The stage of groundwater development in Dhanbad district is 55.80%. The highest stage of development is in Dhanbad (143%) and Jharia (112%) blocks and lowest stage of development is in Nirsa (30%) block. The Gondwana sandstones in general, are known to constitute good aquifers at many places. However, the yield potential of the area adjoining to active mines in the coal belt is poor. The active mines often act as groundwater "sinks". In contrast, the water logged abandoned mines and pits act as potential sources of groundwater. As per the assessment done by Central Ground Water Board (CGWB), Patna in 2011, the Block wise data of Dhanbad district is given below:

Table No-5: Block-wise Stage of Groundwater development

SI	Administrative	Stage of GW	Category
No.	Unit	Development	
1	Baghmara	60%	safe
2	Baliapur	31%	safe
3	Dhanbad	143%	Over- exploited
4	Gobindpur	64%	safe
5	Jharia	112%	Over- exploited
6	Nirsa	30%	safe
7	Tundi	48%	safe
8	Topchachi	62%	safe

Table No-6: Cluster-wise Groundwater development scenario

Cluster/ Area	Adminis- trative	Tota	l Water dem	and (cum/c	lay)		W level in m)		level ng trend	Remarks
, • •	Blocks/Stage	Mine	Surface	Total	Excess		116		-2016	
	Of GW Develo- pment	Discharge	Water Source	Use (Domestic +Industrial +Others)	Or other use	Pre- monsoon	Post- monsoon	Pre- monsoon	Post- monsoon	
Cluster-	Bermo 44%	2950	NIL	2123	827	4.23	2.40	NO	NO	-
Cluster- II	Baghmara 60%	8350	Jamunia river	7265	1085	6.64	3.26	NO	NO	-
Cluster- III	Baghmara 60%	10,960	NIL	7290	3670	5.72	3.65	NO	NO	-
Cluster- IV	Baghmara 60%	5900	MADA (Damodar river)	5900	NIL	4.84	2.30	NO	NO	
Cluster- V	Baghmara 60%	11,025	MADA	9214	1811	5.32	1.76	YES	NO	Excess water stored into abandoned UG
Cluster- VI	Dhanbad 143%	4150	MADA (Damodar river)	4150	NIL	3.43	2.55	YES	YES	Artificial recharge structure needed
Cluster- VII	Dhanbad 143%	14,920	MADA	14,639	281	2.94	2.32	NO	NO	
Cluster- VIII	Jharia 112%	9320	MADA	5474	3846	7.45	3.74	NO	NO	Excess water stored into abandoned UG & FF
Cluster- IX	Jharia 112%	12,980	MADA	9714	3266	4.92	3.41	NO	NO	Excess water stored into abandoned UG & FF
Cluster- X	Jharia 112%	11,825	Damodar river	6525	5300	5.75	3.68	YES	NO	Excess water stored into abandoned UG & OC
Cluster- XI	Dhanbad 143%	31,530	MADA & DVC	18,825	12,705	4.11	2.73	NO	YES	Excess water used F.P
Cluster- XIII	Baghmara 60%	4774	Damodar river	4115	659	7.62	3.93	NO	NO	-
Cluster- XIV	Baghmara 60%	2600	DVC	1875	725	8.99	3.66	NO	NO	
Cluster- XV	Baghmara 60%	6200	Jamunia river	4147 +1800 (ponds)	253	10.09	6.46	NO	YES	Excess water store into surface bodies
Cluster- XVI	Nirsa 30%	3380	DVC (Barakar river)	2450	930	6.24	3.18	NO	NO	

7.0 CONSERVATION MEASURES & FUTURE STRATEGY

- BCCL has installed 25 Pressure Filter Plant of total capacity of 4.16 MGD to meet drinking water requirement nearby the area. At present 63 Water Treatment Plants are operational having capacity of 16.16 MGD within Jharia Coalfield area. Further installation of 28 more Pressure Filter Plants with the capacity of 5.84 MGD are in progress.
- BCCL participated in development of low cost technology for drinking water in a CSIR project along with CIMFR, Dhanbad and a pilot plant of 4000 Liters/hour is functional at PB Project site of BCCL. Similar plant has been proposed at other sites of BCCL.
- A scheme entitled 'Scheme for multi-purpose utilization of surplus mine water of Barora Area, Block II and Govindpur Area of BCCL' was prepared with a view to harness the excess water discharge to take care of the persistence problem of water scarcity in the nearby villages. In the scheme, two water reservoirs of capacity 27 MG and 17 MG have been proposed in the non-coal bearing area for storage of 3250 GPM and 2000 GPM surplus mine water which will be fed through pipe line by mine discharge at mines of Barora, Block-II and Govindpur Area.
- Roof-top rainwater harvesting (RWH) will be taken up in the project area using the administrative buildings. 138 no. of quarters having roof-top area of about 14950 sq. m. is already prepared to harvest rainwater and around 13150 cum/annum of water is going to be recharged the nearby groundwater system through RWH structures. Proposal already made to facilitate this kind of RWH structure at suitable locations i.e. Lodna Area, Kusunda Area (Jawahar Nagar, Matkuria, Coal Board Colony), Sijua Area (Nichitpur and Tetulmari Colony) within Jharia Coalfield to augment groundwater recharge.
- After cessation of mining, with plenty rainfall and abundant ground water recharge, the water levels will recoup and attain normalcy. Thus, the impact of mining on groundwater system may be considered as a temporary

phenomenon. The abandoned mine workings (UG) behave as water pool and improves the resources availability in the coalfield area.

- Utilization of treated mine water discharge by both industry and local people in the mine influence area. The excess mine water can be used to recharge groundwater system through connecting pipeline to abandoned dug wells. Utilization of mine water for irrigation use will also enhance the ground water recharge potential through artificial recharge in the area.
- Increase vegetative cover by plantation in the mine area under land amelioration measures. This will contain the surface run-off and increase the groundwater recharge.
- Creation of awareness among workers and local peoples about Rain water harvesting and artificial recharge will be given priority. This aspect is usually covered during the Environmental Week celebrated every year (5 to 12 June).
- Monitoring of water quality of mine water discharge, local River/nala and domestic water source (dug well/hand pump wells) will be continued under routine monitoring (February, May, August & November).

Annexure - I

Rainfall Data (in mm) At Dhansar (Rescue station) Observatory Station, State Sec Deptt of Coord, BCCL

Year 2005	January 34.20	February 22.80	March 41.80	April 32.20	May 33.00	June 193.00	July 542.00	August 107.80	September 185.60	October 39.20	November 0.00	December 2.00	Annual 0
2006	0.00	0.00	34.40	33.80	87.60	214.20	477.70	246.30	172.00	0.00	1.00	0.00	0.797
2007	0.00	22.00	37.80	0.00	78.70	167.20	545.00	426.40	351.40	52.00	0.00	0.00	1680.50
2008	5.80	4.80	17.80	18.40	18.00	216.10	433.48	183.80	297.80	85.80	0.00	0.00	1281.78
2009	0.00	0.00	1.60	2.20	112.00	72.80	269.20	192.80	333.00	98.20	10.20	0.00	1092.00
2010	0.00	12.20	7.60	9.20	64.30	206.20	199.40	212.60	230.10	45.30	3.4		991.90
2011	7.60	0.00	18.0	11.40	121.60	344.20	163.40	452.0	374.0	41.80	0.00	0.00	1534.20
2012	17.6	13.4	1.0	9.0	6.60	52.0	328.20	315.10	367.70	11.60	61.60	18.0	1201.8 0
2013	0.0	32.0	3.0	33.90	190.40	244.20	192.80	364.40	304.70	233.60	0.0	0.0	1599.0
2014	12.40	36.80	21.80	2.60	79.80	217.60	305.30	315.60	178.0	6.40	0.0	0.0	1176.0
2015	23.80	0.0	6.20	76.20	35.80	122.10	407.60	244.40	145.20	25.60	0.0	6.20	1093.1 0
2016	3.0	20.60	5.50	0.0	99.40	181.60	248.80	456.70	443.60	50.40	0.0	0.0	1509.6 0

Annexure – IIA

Details of Hydrograph Stations (Dug Wells)

Well No	Location	M.P. (agl) in m	Well Dia in m	Well Dept h (m bmp)	R.L. (G.L) (m)	Formation	Owner	Utility
A-3	Sijua	0.53	3.00	5.20	203	Barakar	Govt.	Domestic
A-12	Jamua	0.80	1.90	3.30	202	Barakar	Govt.	Domestic
A-16	Ekra, Kalali More	0.45	3.10	6.50	205	Barakar	Govt.	Domestic
A-17	Kachi Balihari	0.56	1.60	5.30	182	Barakar	Govt.	Domestic
A-18	Bhagabandh	0.61	1.45	3.37	182	Barakar	Govt.	Domestic
A-19	Bhaura	0.54	3.15	11.65	162	Barakar	Govt.	Domestic
A-20	Gorbhudih	0.43	3.30	8.30	181	BM	Govt.	Domestic
A-22	Nagdah, Niche tola	0.00	1.40	9.50	171	Raniganj	Govt	Irrigation
A-23	Machhyara	0.43	1.85	12.40	203	Raniganj	Govt	Domestic
A-24	Pipra Tanr	0.22	1.80	19.55	208	Raniganj	Govt	Domestic
A-25	Sinidih	0.22	2.00	11.30	203	Barakar	Govt	Domestic
A-26	Pasitanr (Malkera)	0.32	1.80	9.65	198	Barakar	Govt	Domestic
A-27	Chandor	0.60	2.50	5.50	221	Barakar	Govt	Domestic
A-28A	Lakarka 6 no.	0.65	1.30	5.25	199	Barakar	BCCL	Domestic
A-29	Aambagan (Gobindpur)	0.10	2.60	9.15	186	Barakar	Govt	Domestic
A-32	Baludih	0.55	2.30	6.85	182	BM	Govt	Domestic
A-33	Mahuda	0.75	2.00	10.80	195	BM	BCCL	Domestic
A-34	Bhatdih	0.55	3.50	24.50	162	Raniganj	BCCL	Domestic
B-1	Muraidih	0.47	1.80	5.35	212	Talchir	Govt	Domestic
B-14	Mathadih	0.76	2.15	3.75	201	Barakar	Govt	Domestic
B-15	Bera Basti	0.55	1.60	2.50	221	Talchir	Dhanu Roy	Domestic
B-21A	Dugdha	0.55	2.10	10.35	220	Metamorphics	Govt	Domestic
B-23	Lohapati	0.26	3.60	10.85	204	Raniganj	Govt	Domestic
B-24	Telmuchu	0.67	4.35	10.83	207	Raniganj	Govt	Domestic
B-25	Mahuda More	0.10	2.45	8.45	205	Raniganj	Govt	Domestic
B-32A	Madhuband	0.80	4.30	8.60	205	Barakar	BCCL	Domestic
B-48	Mahuda	0.65	2.10	11.50	181	Raniganj	Mosque	Domestic
B-51	Taranga	0.00	2.50	5.75	215	Metamorphics	Bisun	Irrigation
B-53	Karmatanr	0.58	2.70	13.25	195	Barakar	Govt	Domestic
B-53A	Karmatanr- Damoda OCP							
B-59	Khodovaly	0.60	2.40	9.30	202	Barakar	BCCL	Domestic
B-60	Bahiyardih	0.77	3.00	15.60	196	Barakar	BCCL	Domestic
B-61A	Kesargora	0.48	2.00	11.20	201	Barakar	BCCL	Domestic
B-62A	Sadariyadih	0.15	3.10	9.50	188	Barakar	Govt	Domestic

Annexure – IIA Details of Hydrograph Stations (Dug Wells)

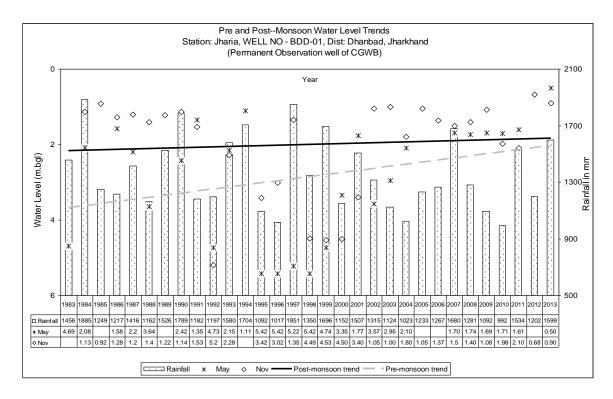
Well No	Location	M.P. (agl) in m	Well Dia in m	Well Dept h (m bmp)	R.L. (G.L) (m)	Formation	Owner	Utility
B-63	West Mudidih	0.60	1.70	3.35	196	Barakar	BCCL	Domestic
B-64	Keshalpur	0.65	1.10	3.40	195	Barakar	BCCL	Domestic
B-65A	Jhinjipahari	0.95	2.20	12.40	196	Barakar	Shiv Temple	Domestic
B-67	Simatanr	0.55	2.20	11.80	198	Raniganj	Govt	Domestic
D-3	Dhansar	0.60	1.70	8.70	217	Barakar	Govt	Domestic
D-4	Jharia	0.59	1.90	5.73	218	Barakar	Govt	Domestic
D-5	Jiyalgora	0.70	2.80	10.55	183	Barakar	Govt	Domestic
D-7	Golden Pahari	0.67	2.85	10.05	201	Barakar	BCCL	Domestic
D-8	Alokdiha	0.35	1.75	7.57	201	Metamorphics	BCCL	Domestic
D-23	Jogta (Sindra)	0.40	3.10	7.25	205	Barakar	BCCL	Domestic
D-25	Godhar More	0.60	2.75	5.60	219	Barakar	Govt	Domestic
D-30	Borkiboa	0.70	2.00	5.60	221	Talchir	H.Kumbhakar	Domestic
D-33	Kustore-4	0.55	1.85	3.45	196	Barakar	BCCL	Domestic
D-34	Kusunda-7	0.60	1.50	3.45	201	Barakar	BCCL	Domestic
D-35	Patherdih	0.40	2.00	11.20	160	Barakar	BCCL	Domestic
D-36	Sudamdih	0.90	2.00	6.20	141	Barakar	BCCL	Domestic
D-39	Tilabani	0.85	2.00	5.90	178	Barakar	BCCL	Domestic
D-40A	Khapra Dhaora	0.55	1.95	3.70	180	Barakar	Panchayat	Domestic
D-41	Joyrampur	0.50	1.80	4.00	180	Barakar	BCCL	Domestic
D-43	Alagdih	0.45	2.20	8.90	200	Metamorphics	Govt	Domestic
D-47	Parastanr	0.45	3.20	23.80	206	Barakar	BCCL	Domestic
D-49	Goluckdih	0.55	1.80	6.15	192	Barakar	BCCL	Domestic
D-51	Chankuiya	0.55	3.70	11.90	197	Barakar	BCCL	Domestic
D-55	Hariladih	0.48	2.80	11.80	184	Barakar	Govt	Domestic
D-74	Bhulan Barari	0.10	1.60	12.80	173	Barakar	Govt	Domestic
D-77	Rohoniatanr	0.40	3.15	6.70	156	Barakar	Govt	Domestic
D-80	Bastacolla	0.70	2.50	24.95	219	Barakar	Govt	Domestic
DB-22	Nichebasti	0.67	2.40	10.65	121	Barakar	Govt	Domestic
DB-23	Dahibari OC	0.70	2.30	8.00	-	Barakar	BCCL	Domestic
DB-24	Dahibari	0.60	3.60	13.70	125	Barakar	BCCL	Domestic
DB-25	Palasya	0.37	1.55	5.25	127	Barakar	Govt	Domestic

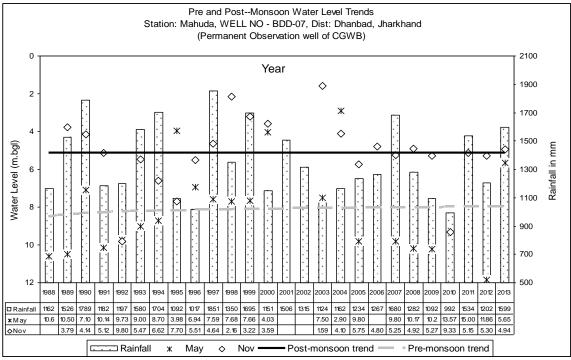
MP: Measuring Point R.L.: Reduced Level W.L.: Water Level m: Meter Abn.: Abandoned b.g.l.: Below Ground Level a.g.l.: Above Ground Level

G.L.: Ground Level bmp: Below Measuring Point BM: Barren Measure

Annexure – IIB **Historical Water Level data of Hydrograph Stations**

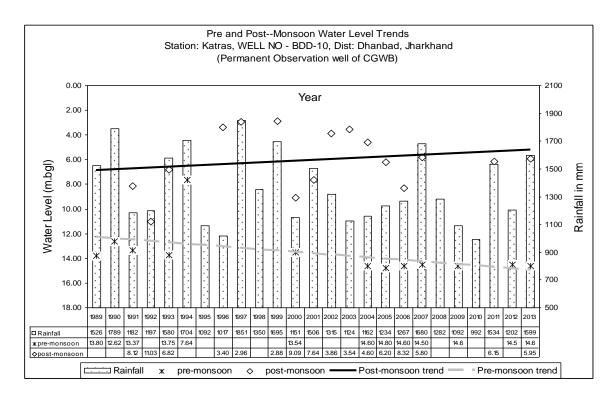
14/- !!	Water level below ground level (bgl) in meters														
Well No	May, 08	Nov, 08	Мау, 10	Nov, 10	May, 11	May, 12	Nov, 12	May, 13	Nov, 13	May, 14	Nov, 14	Мау, 15	Nov, 15	Мау, 16	Nov, 16
A-3	4.67	4.52	4.71	3.57	4.77	4.25	1.87	4.47	4.45	4.67	2.37	3.70	3.42	4.87	0.47
A-12	2.95	1.25	2.82	1.60	2.80	2.80	1.30	3.00	1.17	2.45	1.4	3.00	2.68	2.50	0.70
A-16	4.99	1.58	4.17	1.90	5.80	3.53	1.60	3.80	3.35	5.5	2.9	5.55	4.17	5.85	3.15
A-17	2.54	2.36	2.39	2.37	2.24	2.52	2.34	2.32	1.54	2.19	1.91	3.79	2.64	2.44	2.69
A-18	2.51	1.04	2.49	0.94	2.49	2.59	0.90	2.87	0.91	1.76	1.19	2.84	1.29	1.14	0.89
A19	9.76	2.81	3.61	2.81		9.61	2.46	7.46	4.46	3.00	2.75	3.05	2.75	7.81	4.11
A-20	0.52	1.43	7.42	1.87	7.87	7.17	1.57	6.47	0.67	3.97	2.55	4.59	2.93	7.49	3.50
A22A						1.90	1.05	1.79	1.00	1.50	2.0	3.20	1.96	3.25	1.75
A-23	10.01	5.37	10.67	11.07	11.92	9.87	4.75	10.57	5.82	8.76	6.82	11.3	9.37	11.87	8.13
A-24	18.35	9.13	14.47	15.88	18.28	18.68	5.23	16.01	3.25	16.28	14.98	17.2	14.5	16.62	12.43
A-25	7.12	4.53	7.23	5.10	6.83	10.23	4.43	10.23	2.98	7.03	5.28	7.78	5.85	7.43	4.58
A-26	5.53	4.13	7.77	3.95	9.18	8.76	4.28	7.56	4.28	7.71	4.58	7.73	3.18	8.93	4.48
A-27	1.60	1.20	1.98	1.42	3.00	2.13	1.10	1.62	1.25	1.63	1.55	4.40	3.95	4.85	1.80
A28A	2.92	3.25	3.29	2.73	3.90	2.90	2.45	3.35	2.45	3.29	1.91	4.35	3.60	3.35	1.47
A-29	2.85	1.50	3.80		5.50	9.30	1.42	6.95	1.67	3.3	2.35	4.55	4.60	5.92	6.96
A-32	1.20	1.72	1.95	1.35	2.30	2.19	1.10	2.45	1.95	3.15	2.45	4.41	2.13	4.75	2.10
A-33	1.55	2.73	3.03	1.85	3.07	5.25	1.25	4.13	1.80	4.08	1.57	4.91	1.97	5.75	2.60
A-34	3.05	2.85	2.85	3.77	2.90	6.95	2.90	6.21	2.50	4.45	4.45	8.40	4.81	4.75	4.45
B-1	2.73	1.73	2.43	1.73	1.78	2.08	1.73	1.53	1.83	2.43	1.81	3.28	2.75	3.58	1.93
B-14	2.89	3.02	1.35	1.09	2.49	1.34	1.42	1.74	1.45	3.24	4.44	2.94	2.29	2.44	0.47
B-15	1.37	0.37	1.40	1.38	1.37	1.27	0.45	1.20	0.55	0.95	1.45	1.50	0.45	1.85	0.55
B21A	8.75	4.79	9.15	5.65	7.60	9.00	5.05	8.01	4.95	9.54	3.7	7.37	4.65	5.55	4.50
B-23	5.19	2.22	6.14	3.56	9.14	3.71	1.74	5.27	1.39	6.57	2.74	7.86	4.29	6.81	2.41
B-24	10.51	5.21	9.45	4.95	10.33		3.09	8.88	2.83	9.40	2.21	10.0	5.78	10.63	4.28
B-25	7.95	2.60	5.88	7.00	8.35	8.35	2.60	7.08	2.15	5.82	5.15	6.88	-	7.05	1.70
B32A	7.50	3.36	6.50	4.32	7.80	7.75	3.22	6.25	2.68	8.33	2.05	7.55	3.32	6.95	3.07
B-48	3.70	3.50	4.10		5.75	5.43	3.85	4.69	3.20	6.38	4.35	7.90	5.42	9.35	4.60
B-51	3.90	2.38	3.94	2.38	3.95	3.60	2.05	3.35	2.49	2.09	1.98	4.65	3.40	4.90	3.18
B-53		1.32	1.77	1.72	1.67	6.97	1.42	4.15	1.12	3.39	-	5.58	2.82	4.70	1.45
B-59	3.95	0.45	6.75	1.00	8.25	6.90	0.60	7.56	0.30	2.65	1.0	4.12	1.60	4.40	0.50
B-60	6.13	5.28	10.56	5.24	11.44	10.18	5.13	11.29	5.23	9.82	4.59	9.21	5.28	10.33	5.03
B61A	10.62	2.49	4.96	3.36	10.72	5.42	2.40	8.17	2.02	6.93	3.57	6.15	4.52	6.58	3.87
B62A	8.12	5.95	8.37	7.90	8.85	7.85	4.90	7.73	4.63	8.83	5.85	9.10	5.21	9.30	4.95

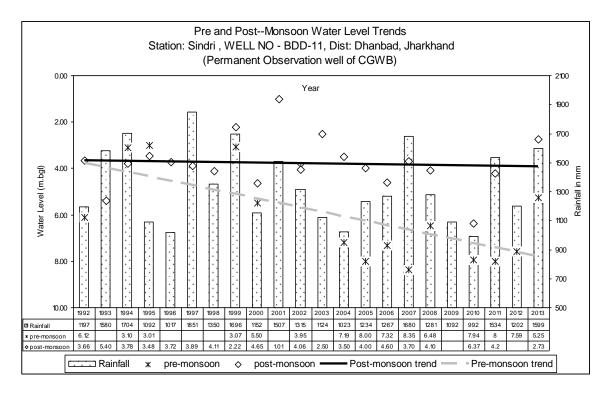

JOB NO - 200416003 36


Annexure – IIB Historical Water Level data of Hydrograph Stations

Well No	Water level below ground level (bgl) in meters														
	May, 08	Nov, 08	Мау, 10	Nov, 10	May, 11	May, 12	Nov, 12	Мау, 13	Nov, 13	May, 14	Nov, 14	May, 15	Nov, 15	Мау, 16	Nov, 16
B-63	1.57	0.50	1.03	1.00	1.05	1.09		1.32	0.80	1.22	0.92	2.46	1.40	2.44	-
B-64	0.77	0.75	0.79	1.05	0.85	1.05	1.00	1.35	0.85	0.7	1.15	1.38	0.95	2.35	0.55
B65A	11.53	3.35	11.45	3.39	9.65	11.45	1.73	10.11	1.82	10.45	2.4	7.82	5.87	7.15	2.68
B-67	8.75	6.85	11.00	10.69	11.25	8.55	6.50	9.73	5.31	9.80	3.72	9.23	5.53	9.53	4.30
D-3	3.25	2.20	3.15	2.55	2.55	2.93	1.80	3.45	1.68	2.54	2.11	4.25	2.25	2.35	1.90
D-4	3.13	1.41	2.61	1.46	1.51	1.94	0.91	2.41	0.98	1.23	0.91	2.41	1.27	1.21	1.36
D-5	9.40	7.85	9.05	6.65	9.05	9.50	6.45	9.32	4.59	9.0	7.8	9.37	8.33	9.40	6.40
D-7	9.23	5.23	9.23		9.33	6.08	5.83	7.19	4.63	5.28	5.53	8.25	5.61	7.53	4.03
D-8	6.70	1.87	6.85	6.73	7.75	6.15	3.75	6.65	2.85	7.73	-	6.24	4.38	8.00	3.43
D-23	2.20	1.70	5.85	4.85	6.80	6.00	3.30	6.60	1.20	6.38	2.4	6.55	3.48	5.70	1.63
D-25	4.70	4.75	5.10	2.30	4.70	5.20	3.65	4.26	3.45	4.42	2.9	4.48	2.45	2.40	1.90
D-30	4.70	1.37	2.90	2.23	5.10	3.88	1.80	4.38	3.08	4.17	3.3	4.55	3.15	4.45	3.20
D-33	0.45		0.94	0.70	0.95	2.85	0.35	1.80	0.45	1.72	0.35	2.25	1.10	2.50	1.95
D-34			2.85	2.65	2.85	2.35	2.50	2.50	2.13	2.80	0.30	2.55	1.45	2.30	0.30
D-35	6.25	4.90	7.30	6.15	8.20	8.05	5.55	7.70	4.10	6.94	6.15	9.80	7.90	9.52	6.45
D-36	2.22	0.35	0.85	0.10	1.95	1.55	0.15	1.28	0.80	1.82	0.75	1.66	1.13	0.78	0.95
D-39	4.95	3.85	4.75	3.40	5.05	5.05	3.65	3.98	2.50	5.03	2.25	5.00	2.61	2.18	2.65
D40A	1.97	2.07	2.50	1.65	1.95	2.45	1.70		2.25	2.35	2.45	3.07	2.45	1.40	0.85
D-41	1.70	1.65	1.60	1.55	1.55	1.50	1.50	1.72	1.35	3.20	1.35	2.65	2.32	1.30	1.52
D-43	8.20	3.33	7.95	4.95	7.65	7.05	4.00	6.23	4.05	6.0	4.75	6.61	5.05	8.20	3.35
D-47	4.10	3.60	2.95	2.75	4.35	1.95	2.12	2.60	2.97	8.0	2.37	9.60	3.60	3.18	2.95
D-49	2.77	1.75	1.40	1.81	1.55	1.60	1.65	1.30	1.45	2.51	1.65	3.55	2.35	2.45	1.72
D-51	10.65	7.57	11.03	8.93	10.85	10.00	7.85	8.94	8.35	9.60	9.05	10.48	9.15	11.15	6.45
D-55	2.57	2.42	4.62	2.44	5.97	1.93	1.82	3.90	1.45	1.95	2.07	6.15	1.57	2.52	3.62
D-74	4.32	3.80	4.04	3.80	4.05	4.95	3.60	4.55	3.41	5.0	4.0	10.05	7.20	7.73	5.00
D-77	6.38	5.30	6.40	6.30	6.30	6.50	4.75	4.79	5.10	6.23	6.0	6.44	5.60	4.60	2.90
D-80	16.55	4.10	19.20	3.05	17.45	14.20	3.35	15.25	3.32	13.3	3.15	10.97	3.35	6.55	4.15
RCF	RCF (part)		Nov, 10	May, 11	Nov, 11	May, 12	Nov, 12	May, 13	Nov, 13	May, 14	Nov, 14	May, 15	Nov, 15	Мау, 16	Nov, 16
DB22		10 2.79	2.11	2.90	2.23	2.43	2.38	8.18	2.64	6.48	3.03	4.59	3.53	5.38	3.33
DB23		1.50	2.10	3.25	2.70	2.90	2.33	5.05	3.10	3.95	2.13	3.38	6.04	5.30	0.90
DB24		8.25	8.98						8.25	-	8.45	9.52	8.20	10.65	6.50
DB25		4.09	2.99	4.03	2.13	3.96	1.18	1.33	2.53	3.27	2.73	3.83	2.68	3.61	1.98

Annexure - III


HYDROGRAPHS OF CGWB PERMANENT OBSERVATION STATIONS



Annexure - III

HYDROGRAPHS OF CGWB PERMANENT OBSERVATION STATIONS

Annexure – IV

GROUNDWATER SAMPLE LOCATION DETAILS

Sampling month: February, May, August & November month of assessment year'2016

SI	Name of	Ground Water	Dug well	Location	Sampling Date				
No	Cluster	Sample	(CMPDI)	Location	Feb'16	May'16	Aug'16	Nov'16	
1	CLUSTER-	GW-1	B-15	BERA VILLAGE	28/02	20/05	23/08	23/11	
2	CLUSTER- II	GW-2	B-59	KHODOVALY VILLAGE	28/02	20/05	23/08	23/11	
3	CLUSTER- III	GW-3	A-29	GOVINDPUR,AMBAGAN VILLAGE	28/02	20/05	23/08	23/11	
4	CLUSTER- IV	GW-4	B-63	KESHALPUR, BATIGHAR	28/02	20/05	23/08	28/11	
5	CLUSTER- V	GW-5	D-30	BORKIBOA VILLAGE	28/02	20/05	23/08	28/11	
6	CLUSTER- VI	GW-6	D-25	GODHUR MORE	28/02	21/05	30/08	28/11	
7	CLUSTER- VII	GW-7	D-80	DHANSAR MINE RESCUE STN.	29/02	21/05	30/08	28/11	
8	CLUSTER- VIII	GW-8	D-49	NEAR GHANOODIH OC	29/02	21/05	30/08	28/11	
9	CLUSTER- IX	GW-9	D-5	JEALGORA, NEAR P.O.	29/02	21/05	30/08	29/11	
10	CLUSTER- X	GW-10	D-35	PATHERDIH RLY. COLONY	29/02	21/05	30/08	29/11	
11	CLUSTER- XI	GW-11	A-32	MONNIDIH BAZAR	28/02	20/05	24/08	29/11	
12	CLUSTER- XIII	GW-13	A-23	MACHHAYARA, BESIDE NH-32	28/02	20/05	24/08	28/11	
13	CLUSTER- XIV	GW-14	B-23	LOHAPATTI VILLAGE	28/02	20/05	24/08	28/11	
14	CLUSTER- XV	GW-15	B-32A	MADHUBAND VILLAGE	28/02	20/05	24/08	28/11	
15	CLUSTER- XVI	GW-16	D-22	DAHIBARI,NICHE BASTI	29/02	21/05	30/08	29/11	

GROUNDWATER QUALITY DATA (DUG WELLS) Month: February'2016

Stations: 1. Cluster-I (GW-1), Bera Village, Date: 28/02/2016 2. Cluster-II (GW-2), Khodovaly village, Date: 28/02/2016

3. Cluster-III (GW-3), Govindpur, Date: 28/02/2016

Sl.	Parameter	San	npling Statio	ons	Detection	IS:10500	Standard / Test
No		1	2	3	Limit	Drinking Water Standards	Method
1	Boron (as B), mg/l, Max	< 0.20	< 0.20	<0.20	0.20	0.5	APHA, 22 nd Edition ,Carmine
2	Colour,in Hazen Units	1	1	2	1	5	APHA, 22 nd Edition ,PtCo. Method
3	Calcium (as Ca), mg/l, Max	70	79	51	1.60	75	IS-3025/40:1991, EDTA
4	Chloride (as Cl), mg/l, Max	130	96	50	2.00	250	IS-3025/32:1988, R-2007, Argentometric
5	Copper (as Cu), mg/l, Max	< 0.03	< 0.03	< 0.03	0.03	0.05	IS 3025/42 : 1992 R : 2009, AAS-Flame
6	Fluoride (as F) mg/l, Max	0.94	1.11	0.57	0.02	1.0	APHA, 22 nd Edition , SPADNS
7	Free Residual Chlorine, mg/l, Min	0.05	0.06	0.02	0.02	0.2	APHA, 22 nd Edition, DPD
8	Iron (as Fe), mg/l, Max	< 0.06	< 0.06	< 0.06	0.06	0.3	IS 3025 /53 : 2003, R : 2009 , AAS-Flame
9	Lead (as Pb), mg/l, Max	< 0.005	< 0.005	< 0.005	0.005	0.01	APHA, 22 nd Edition, AAS- GTA
10	Manganese (as Mn), mg/l, Max	< 0.02	< 0.02	< 0.02	0.02	0.1	IS-3025/59:2006, AAS-Flame
11	Nitrate (as NO ₃), mg/l, Max	6	2	2	0.5	45	APHA, 22 nd Edition, UV-Spectrphotometric
12	Odour	Agreeable	Agreeable	Agreeable	Qualitative	Agreeable	IS 3025 /05:1983, R-2012, Qualitative
13	pH value	7.97	8.01	8.17	0.2	6.5 to 8.5	IS-3025/11:1983, R-1996, Electrometric
14	Phenolic compounds (as C ₆ H ₅ OH), mg/l, Max	< 0.001	< 0.001	< 0.001	0.001	0.001	APHA, 22 nd Edition,4- Amino Autipyrine
15	Selenium (as Se), mg/l, Max	<0.002	< 0.002	< 0.002	0.002	0.01	APHA, 22 nd Edition, AAS- GTA
16	Sulphate (as SO ₄) mg/l, Max	138	152	65	2.00	200	APHA, 22 nd Edition. Turbidity
17	Taste	Acceptable	Acceptable	Acceptable	Qualitat- ive	Acceptable	APHA, 22 nd Edition. Taste
18	Total Alkalinity (caco3),, mg/l, Max	312	372	308	4.00	200	IS-3025/23:1986, Titration
19	Total Arsenic (as As), mg/l, Max	< 0.002	< 0.002	< 0.002	0.002	0.01	IS 3025/ 37:1988 R : 2003, AAS-VGA
20	Total Chromium (as Cr), mg/l, Max	< 0.04	< 0.04	< 0.04	0.04	0.05	IS-3025/52:2003, AAS- Flame
21	Total Dissolved Solids, mg/l, Max	800	860	570	25.00	500	IS 3025 /16:1984 R : 2006, Gravimetric
22	Total Hardness (caco3), mg/l, Max	424	532	332	4.00	200	IS-3025/21:1983, R-2002, EDTA
23	Turbidity, NTU, Max	2	3	3	1.0	1	IS-3025/10:1984 R-1996, Nephelometric
24	Zinc (as Zn), mg/l, Max	0.015	0.017	0.016	0.01	5.0	IS 3025/ 49 : 1994, R : 2009, AAS-Flame

^{*}Sampling location details and sampling date has been given in **Annexure-IV**.

GROUNDWATER QUALITY DATA (DUG WELLS) Month: February'2016

Stations: 4. Cluster-IV (GW-4), Keshalpur Village, Date: 28/02/2016

Cluster-V (GW-5), Borkiboa village,
 Cluster-VI (GW-6), Godhur,
 Date: 28/02/2016
 Date: 28/02/2016

Sl.	Parameter	Sa	mpling Statio	ons	Detection	IS:10500	Standard / Test
No		4	5	6	Limit	Drinking Water Standards	Method
1	Boron (as B), mg/l, Max	< 0.20	< 0.20	< 0.20	0.20	0.5	APHA, 22 nd Edition ,Carmine
2	Colour,in Hazen Units	6	3	5	1	5	APHA, 22 nd Edition ,Pt Co. Method
3	Calcium (as Ca), mg/l, Max	66	122	99	1.60	75	IS-3025/40:1991, EDTA
4	Chloride (as Cl), mg/l, Max	72	96	94	2.00	250	IS-3025/32:1988, R-2007, Argentometric
5	Copper (as Cu), mg/l, Max	< 0.03	< 0.03	< 0.03	0.03	0.05	IS 3025/42 : 1992 R : 2009, AAS-Flame
6	Fluoride (as F) mg/l, Max	0.53	0.70	1.14	0.02	1.0	APHA, 22 nd Edition , SPADNS
7	Free Residual Chlorine, mg/l, Min	0.02	0.05	0.04	0.02	0.2	APHA, 22 nd Edition, DPD
8	Iron (as Fe), mg/l, Max	< 0.06	< 0.06	< 0.06	0.06	0.3	IS 3025 /53 : 2003, R : 2009 , AAS-Flame
9	Lead (as Pb), mg/l, Max	< 0.005	< 0.005	< 0.005	0.005	0.01	APHA, 22 nd Edition, AAS- GTA
10	Manganese (as Mn), mg/l, Max	< 0.02	< 0.02	< 0.02	0.02	0.1	IS-3025/59:2006, AAS-Flame
11	Nitrate (as NO ₃), mg/l, Max	7	4	3	0.5	45	APHA, 22 nd Edition, UV-Spectrphotometric
12	Odour	Agreeable	Agreeable	Agreeable	Qualitative	Agreeable	IS 3025 /05:1983, R-2012, Qualitative
13	pH value	7.90	7.98	8.02	0.2	6.5 to 8.5	IS-3025/11:1983, R-1996, Electrometric
14	Phenolic compounds (as C ₆ H ₅ OH), mg/l, Max	< 0.001	< 0.001	< 0.001	0.001	0.001	APHA, 22 nd Edition,4- Amino Autipyrine
15	Selenium (as Se), mg/l, Max	< 0.002	<0.002	< 0.002	0.002	0.01	APHA, 22 nd Edition, AAS- GTA
16	Sulphate (as SO ₄) mg/l, Max	66	148	Acceptable	2.00	200	APHA, 22 nd Edition. Turbidity
17	Taste	Acceptable	Acceptable	142	Qualitat- ive	Acceptable	APHA, 22 nd Edition. Taste
18	Total Alkalinity (c _a co ₃),, mg/l, Max	172	176	364	4.00	200	IS-3025/23:1986, Titration
19	Total Arsenic (as As), mg/l, Max	< 0.002	< 0.002	< 0.002	0.002	0.01	IS 3025/ 37:1988 R : 2003, AAS-VGA
20	Total Chromium (as Cr), mg/l, Max	< 0.04	< 0.04	< 0.04	0.04	0.05	IS-3025/52:2003, AAS- Flame
21	Total Dissolved Solids, mg/l, Max	460	900	890	25.00	500	IS 3025 /16:1984 R: 2006, Gravimetric
22	Total Hardness (caco3), mg/l, Max	236	616	528	4.00	200	IS-3025/21:1983, R-2002, EDTA
23	Turbidity, NTU, Max	7	3	7	1.0	1	IS-3025/10:1984 R-1996, Nephelometric
24	Zinc (as Zn), mg/l, Max	0.013	0.020	0.017	0.01	5.0	IS 3025/49 : 1994, R : 2009, AAS-Flame

^{*}Sampling location details and sampling date has been given in **Annexure-IV**.

Annexure - VA

GROUNDWATER QUALITY DATA (DUG WELLS) Month: February'2016

Stations: 7. Cluster-VII (GW-7), Dhansar, Date: 29/02/2016 8. Cluster-VIII (GW-8), Ghanudih, Date: 29/02/2016 9. Cluster-IX (GW-9), Jealgora, Date: 29/02/2016

Sl.	Parameter	Sa	mpling Statio	ons	Detection	IS:10500 Drinking Water	Standard / Test
No		7	8	9	Limit	Standards	Method
1	Boron (as B), mg/l, Max	< 0.20	< 0.20	<0.20	0.20	0.5	APHA, 22 nd Edition ,Carmine
2	Colour,in Hazen Units	<1	3	<1	1	5	APHA, 22 nd Edition ,Pt Co. Method
3	Calcium (as Ca), mg/l, Max	42	78	59	1.60	75	IS-3025/40:1991, EDTA
4	Chloride (as Cl), mg/l, Max	90	100	36	2.00	250	IS-3025/32:1988, R-2007, Argentometric
5	Copper (as Cu), mg/l, Max	< 0.03	< 0.03	< 0.03	0.03	0.05	IS 3025/42 : 1992 R : 2009, AAS-Flame
6	Fluoride (as F) mg/l, Max	0.26	0.66	0.77	0.02	1.0	APHA, 22 nd Edition , SPADNS
7	Free Residual Chlorine, mg/l, Min	0.03	0.04	0.02	0.02	0.2	APHA, 22 nd Edition, DPD
8	Iron (as Fe), mg/l, Max	< 0.06	< 0.06	< 0.06	0.06	0.3	IS 3025 /53 : 2003, R : 2009 , AAS-Flame
9	Lead (as Pb), mg/l, Max	< 0.005	< 0.005	< 0.005	0.005	0.01	APHA, 22 nd Edition, AAS- GTA
10	Manganese (as Mn), mg/l, Max	< 0.02	< 0.02	< 0.02	0.02	0.1	IS-3025/59:2006, AAS-Flame
11	Nitrate (as NO ₃), mg/l, Max	16	9	5	0.5	45	APHA, 22 nd Edition, UV-Spectrphotometric
12	Odour	Agreeable	Agreeable	Agreeable	Qualitative	Agreeable	IS 3025 /05:1983, R-2012, Qualitative
13	pH value	7.93	8.06	8.26	0.2	6.5 to 8.5	IS-3025/11:1983, R-1996, Electrometric
14	Phenolic compounds (as C ₆ H ₅ OH), mg/l, Max	< 0.001	< 0.001	< 0.001	0.001	0.001	APHA, 22 nd Edition,4- Amino Autipyrine
15	Selenium (as Se), mg/l, Max	< 0.002	< 0.002	< 0.002	0.002	0.01	APHA, 22 nd Edition, AAS- GTA
16	Sulphate (as SO ₄) mg/l, Max	76	88	78	2.00	200	APHA, 22 nd Edition. Turbidity
17	Taste	Acceptable	Acceptable	Acceptable	Qualitat- ive	Acceptable	APHA, 22 nd Edition. Taste
18	Total Alkalinity (c _a co ₃),, mg/l, Max	152	244	228	4.00	200	IS-3025/23:1986, Titration
19	Total Arsenic (as As), mg/l, Max	< 0.002	< 0.002	< 0.002	0.002	0.01	IS 3025/37:1988 R: 2003, AAS-VGA
20	Total Chromium (as Cr), mg/l, Max	< 0.04	< 0.04	<0.04	0.04	0.05	IS-3025/52:2003, AAS- Flame
21	Total Dissolved Solids, mg/l, Max	388	650	420	25.00	500	IS 3025 /16:1984 R : 2006, Gravimetric
22	Total Hardness (caco3), mg/l, Max	156	408	256	4.00	200	IS-3025/21:1983, R-2002, EDTA
23	Turbidity, NTU, Max	<1	5	<1	1.0	1	IS-3025/10:1984 R-1996, Nephelometric
24	Zinc (as Zn), mg/l, Max	0.045	0.024	0.018	0.01	5.0	IS 3025/ 49 : 1994, R : 2009, AAS-Flame

^{*}Sampling location details and sampling date has been given in **Annexure-IV**.

Annexure - VA

GROUNDWATER QUALITY DATA (DUG WELLS) Month: February'2016

Stations: 10.Cluster-X (GW-10), Patherdih, Date: 29/02/2016
11.Cluster-XI (GW-11), Moonidih, Date: 28/02/2016
12.Cluster-XIII (GW-13), Machhayara, Date: 28/02/2016

Sl.	Parameter	Sa	mpling Statio	ons	Detection	IS:10500	Standard / Test
No		10	11	12	Limit	Drinking Water Standards	Method
1	Boron (as B), mg/l, Max	< 0.20	< 0.20	< 0.20	0.20	0.5	APHA, 22 nd Edition ,Carmine
2	Colour,in Hazen Units	3	4	2	1	5	APHA, 22 nd Edition ,Pt Co. Method
3	Calcium (as Ca), mg/l, Max	120	40	74	1.60	75	IS-3025/40:1991, EDTA
4	Chloride (as Cl), mg/l, Max	106	94	140	2.00	250	IS-3025/32:1988, R-2007, Argentometric
5	Copper (as Cu), mg/l, Max	< 0.03	< 0.03	<0.03	0.03	0.05	IS 3025/42 : 1992 R : 2009, AAS-Flame
6	Fluoride (as F) mg/l, Max	0.82	0.27	1.01	0.02	1.0	APHA, 22 nd Edition , SPADNS
7	Free Residual Chlorine, mg/l, Min	0.03	0.03	0.06	0.02	0.2	APHA, 22 nd Edition, DPD
8	Iron (as Fe), mg/l, Max	< 0.06	< 0.06	< 0.06	0.06	0.3	IS 3025 /53 : 2003, R : 2009 , AAS-Flame
9	Lead (as Pb), mg/l, Max	< 0.005	< 0.005	< 0.005	0.005	0.01	APHA, 22 nd Edition, AAS- GTA
10	Manganese (as Mn), mg/l, Max	< 0.02	< 0.02	< 0.02	0.02	0.1	IS-3025/59:2006, AAS-Flame
11	Nitrate (as NO ₃), mg/l, Max	6	17	3	0.5	45	APHA, 22 nd Edition, UV-Spectrphotometric
12	Odour	Agreeable	Agreeable	Agreeable	Qualitative	Agreeable	IS 3025 /05:1983, R-2012, Qualitative
13	pH value	7.71	7.56	8.12	0.2	6.5 to 8.5	IS-3025/11:1983, R-1996, Electrometric
14	Phenolic compounds (as C ₆ H ₅ OH), mg/l, Max	< 0.001	< 0.001	< 0.001	0.001	0.001	APHA, 22 nd Edition,4- Amino Autipyrine
15	Selenium (as Se), mg/l, Max	< 0.002	< 0.002	<0.002	0.002	0.01	APHA, 22 nd Edition, AAS- GTA
16	Sulphate (as SO ₄) mg/l, Max	178	70	132	2.00	200	APHA, 22 nd Edition. Turbidity
17	Taste	Acceptable	Acceptable	Acceptable	Qualitat- ive	Acceptable	APHA, 22 nd Edition. Taste
18	Total Alkalinity (c _a co ₃),, mg/l, Max	172	84	308	4.00	200	IS-3025/23:1986, Titration
19	Total Arsenic (as As), mg/l, Max	<0.002	< 0.002	< 0.002	0.002	0.01	IS 3025/ 37:1988 R : 2003, AAS-VGA
20	Total Chromium (as Cr), mg/l, Max	< 0.04	< 0.04	< 0.06	0.04	0.05	IS-3025/52:2003, AAS- Flame
21	Total Dissolved Solids, mg/l, Max	910	390	790	25.00	500	IS 3025 /16:1984 R : 2006, Gravimetric
22	Total Hardness (c _a co ₃), mg/l, Max	600	160	428	4.00	200	IS-3025/21:1983, R-2002, EDTA
23	Turbidity, NTU, Max	3	5	3	1.0	1	IS-3025/10:1984 R-1996, Nephelometric
24	Zinc (as Zn), mg/l, Max	0.020	0.04	0.022	0.01	5.0	IS 3025/ 49 : 1994, R : 2009, AAS-Flame

^{*}Sampling location details and sampling date has been given in **Annexure-IV**.

Annexure - VA

GROUNDWATER QUALITY DATA (DUG WELLS) Month: February'2016

Stations: 13. Cluster-XIV (GW-14), Lohapatti, Date: 28/02/2016
14. Cluster-XV (GW-15), Madhuband, Date: 28/02/2016
15. Cluster-XVI (GW-16), Dahibari, Date: 29/02/2016

Sl.	Parameter	Sa	mpling Statio	ons	Detection	IS:10500	Standard / Test
No		13	14	15	Limit	Drinking Water Standards	Method
1	Boron (as B), mg/l, Max	< 0.20	<0.20	<0.20	0.20	0.5	APHA, 22 nd Edition ,Carmine
2	Colour,in Hazen Units	1	3	4	1	5	APHA, 22 nd Edition ,Pt Co. Method
3	Calcium (as Ca), mg/l, Max	46	53	75	1.60	75	IS-3025/40:1991, EDTA
4	Chloride (as Cl), mg/l, Max	82	58	56	2.00	250	IS-3025/32:1988, R-2007, Argentometric
5	Copper (as Cu), mg/l, Max	< 0.03	< 0.03	< 0.03	0.03	0.05	IS 3025/42 : 1992 R : 2009, AAS-Flame
6	Fluoride (as F) mg/l, Max	0.64	0.58	0.48	0.02	1.0	APHA, 22 nd Edition , SPADNS
7	Free Residual Chlorine, mg/l, Min	0.02	0.03	0.03	0.02	0.2	APHA, 22 nd Edition, DPD
8	Iron (as Fe), mg/l, Max	< 0.06	< 0.06	< 0.06	0.06	0.3	IS 3025 /53 : 2003, R : 2009 , AAS-Flame
9	Lead (as Pb), mg/l, Max	< 0.005	< 0.005	< 0.005	0.005	0.01	APHA, 22 nd Edition, AAS- GTA
10	Manganese (as Mn), mg/l, Max	< 0.02	< 0.02	< 0.02	0.02	0.1	IS-3025/59:2006, AAS-Flame
11	Nitrate (as NO ₃), mg/l, Max	2	2	12	0.5	45	APHA, 22 nd Edition, UV-Spectrphotometric
12	Odour	Agreeable	Agreeable	Agreeable	Qualitative	Agreeable	IS 3025 /05:1983, R-2012, Qualitative
13	pH value	8.17	8.20	7.92	0.2	6.5 to 8.5	IS-3025/11:1983, R-1996, Electrometric
14	Phenolic compounds (as C ₆ H ₅ OH), mg/l, Max	< 0.001	< 0.001	< 0.001	0.001	0.001	APHA, 22 nd Edition,4- Amino Autipyrine
15	Selenium (as Se), mg/l, Max	<0.002	<0.002	<0.002	0.002	0.01	APHA, 22 nd Edition, AAS- GTA
16	Sulphate (as SO ₄) mg/l, Max	66	75	122	2.00	200	APHA, 22 nd Edition. Turbidity
17	Taste	Acceptable	Acceptable	Acceptable	Qualitat- ive	Acceptable	APHA, 22 nd Edition. Taste
18	Total Alkalinity (c _a co ₃),, mg/l, Max	248	332	148	4.00	200	IS-3025/23:1986, Titration
19	Total Arsenic (as As), mg/l, Max	< 0.002	< 0.002	< 0.002	0.002	0.01	IS 3025/ 37:1988 R : 2003, AAS-VGA
20	Total Chromium (as Cr), mg/l, Max	< 0.04	< 0.04	< 0.04	0.04	0.05	IS-3025/52:2003, AAS- Flame
21	Total Dissolved Solids, mg/l, Max	480	540	580	25.00	500	IS 3025 /16:1984 R: 2006, Gravimetric
22	Total Hardness (caco3), mg/l, Max	244	348	364	4.00	200	IS-3025/21:1983, R-2002, EDTA
23	Turbidity, NTU, Max	2	4	6	1.0	1	IS-3025/10:1984 R-1996, Nephelometric
24	Zinc (as Zn), mg/l, Max	0.012	0.01	0.149	0.01	5.0	IS 3025/49:1994, R:2009, AAS-Flame

^{*}Sampling location details and sampling date has been given in **Annexure-IV**.

GROUNDWATER QUALITY DATA (DUG WELLS) Month: May'2016

Stations: 1. Cluster-I (GW-1), Bera Village, 2. Cluster-II (GW-2), Khodovaly village, 3. Cluster-III (GW-3), Govindpur, Date: 20/05/2016

Sl.	Parameter	San	npling Statio	ons	Detection	IS:10500	Standard / Test
No		1	2	3	Limit	Drinking Water Standards	Method
1	Boron (as B), mg/l, Max	< 0.20	< 0.20	< 0.20	0.20	0.5	APHA, 22 nd Edition ,Carmine
2	Colour,in Hazen Units	5	2	6	1	5	APHA, 22 nd Edition ,PtCo. Method
3	Calcium (as Ca), mg/l, Max	77	80	96	1.60	75	IS-3025/40:1991, EDTA
4	Chloride (as Cl), mg/l, Max	102	56	60	2.00	250	IS-3025/32:1988, R-2007, Argentometric
5	Copper (as Cu), mg/l, Max	< 0.03	< 0.03	<0.03	0.03	0.05	IS 3025/42 : 1992 R : 2009, AAS-Flame
6	Fluoride (as F) mg/l, Max	1.10	0.73	0.72	0.02	1.0	APHA, 22 nd Edition , SPADNS
7	Free Residual Chlorine, mg/l, Min	0.06	0.07	0.04	0.02	0.2	APHA, 22 nd Edition, DPD
8	Iron (as Fe), mg/l, Max	< 0.06	< 0.06	< 0.06	0.06	0.3	IS 3025 /53 : 2003, R : 2009 , AAS-Flame
9	Lead (as Pb), mg/l, Max	< 0.005	< 0.005	< 0.005	0.005	0.01	APHA, 22 nd Edition, AAS- GTA
10	Manganese (as Mn), mg/l, Max	< 0.02	< 0.02	< 0.02	0.02	0.1	IS-3025/59:2006, AAS-Flame
11	Nitrate (as NO ₃), mg/l, Max	4	5	4	0.5	45	APHA, 22 nd Edition, UV-Spectrphotometric
12	Odour	Agreeable	Agreeable	Agreeable	Qualitative	Agreeable	IS 3025 /05:1983, R-2012, Qualitative
13	pH value	7.78	8.04	7.81	0.2	6.5 to 8.5	IS-3025/11:1983, R-1996, Electrometric
14	Phenolic compounds (as C ₆ H ₅ OH), mg/l, Max	< 0.001	< 0.001	< 0.001	0.001	0.001	APHA, 22 nd Edition,4- Amino Autipyrine
15	Selenium (as Se), mg/l, Max	<0.002	<0.002	<0.002	0.002	0.01	APHA, 22 nd Edition, AAS- GTA
16	Sulphate (as SO ₄) mg/l, Max	172	230	98	2.00	200	APHA, 22 nd Edition. Turbidity
17	Taste	Acceptable	Acceptable	Acceptable	Qualitat- ive	Acceptable	APHA, 22 nd Edition. Taste
18	Total Alkalinity (c _a co ₃),, mg/l, Max	336	236	360	4.00	200	IS-3025/23:1986, Titration
19	Total Arsenic (as As), mg/l, Max	< 0.002	< 0.002	< 0.002	0.002	0.01	IS 3025/ 37:1988 R : 2003, AAS-VGA
20	Total Chromium (as Cr), mg/l, Max	<0.04	<0.04	< 0.04	0.04	0.05	IS-3025/52:2003, AAS- Flame
21	Total Dissolved Solids, mg/l, Max	1070	970	890	25.00	500	IS 3025 /16:1984 R : 2006, Gravimetric
22	Total Hardness (caco3), mg/l, Max	600	612	488	4.00	200	IS-3025/21:1983, R-2002, EDTA
23	Turbidity, NTU, Max	17	4	15	1.0	1	IS-3025/10:1984 R-1996, Nephelometric
24	Zinc (as Zn), mg/l, Max	0.01	0.03	0.03	0.01	5.0	IS 3025/49 : 1994, R : 2009, AAS-Flame

^{*}Sampling location details and sampling date has been given in **Annexure-IV**.

GROUNDWATER QUALITY DATA (DUG WELLS) Month: May'2016

Stations: 4. Cluster-IV (GW-4), Keshalpur Village, Date: 20/05/2016

Cluster-V (GW-5), Borkiboa village,
 Cluster-VI (GW-6), Godhur,
 Date: 20/05/2016
 Date: 21/05/2016

Sl.	Parameter	Sa	mpling Statio	ons	Detection	IS:10500	Standard / Test
No		4	5	6	Limit	Drinking Water Standards	Method
1	Boron (as B), mg/l, Max	< 0.20	< 0.20	< 0.20	0.20	0.5	APHA, 22 nd Edition ,Carmine
2	Colour,in Hazen Units	2	2	2	1	5	APHA, 22 nd Edition ,Pt Co. Method
3	Calcium (as Ca), mg/l, Max	77	96	83	1.60	75	IS-3025/40:1991, EDTA
4	Chloride (as Cl), mg/l, Max	80	96	122	2.00	250	IS-3025/32:1988, R-2007, Argentometric
5	Copper (as Cu), mg/l, Max	< 0.03	< 0.03	< 0.03	0.03	0.05	IS 3025/42 : 1992 R : 2009, AAS-Flame
6	Fluoride (as F) mg/l, Max	1.30	1.04	1.06	0.02	1.0	APHA, 22 nd Edition , SPADNS
7	Free Residual Chlorine, mg/l, Min	0.03	0.05	0.03	0.02	0.2	APHA, 22 nd Edition, DPD
8	Iron (as Fe), mg/l, Max	< 0.06	< 0.06	< 0.06	0.06	0.3	IS 3025 /53 : 2003, R : 2009 , AAS-Flame
9	Lead (as Pb), mg/l, Max	< 0.005	< 0.005	< 0.005	0.005	0.01	APHA, 22 nd Edition, AAS- GTA
10	Manganese (as Mn), mg/l, Max	< 0.02	< 0.02	< 0.02	0.02	0.1	IS-3025/59:2006, AAS-Flame
11	Nitrate (as NO ₃), mg/l, Max	7	3	6	0.5	45	APHA, 22 nd Edition, UV-Spectrphotometric
12	Odour	Agreeable	Agreeable	Agreeable	Qualitative	Agreeable	IS 3025 /05:1983, R-2012, Qualitative
13	pH value	7.80	8.13	7.49	0.2	6.5 to 8.5	IS-3025/11:1983, R-1996, Electrometric
14	Phenolic compounds (as C ₆ H ₅ OH), mg/l, Max	< 0.001	< 0.001	< 0.001	0.001	0.001	APHA, 22 nd Edition,4- Amino Autipyrine
15	Selenium (as Se), mg/l, Max	< 0.002	<0.002	<0.002	0.002	0.01	APHA, 22 nd Edition, AAS- GTA
16	Sulphate (as SO ₄) mg/l, Max	135	156	Acceptable	2.00	200	APHA, 22 nd Edition. Turbidity
17	Taste	Acceptable	Acceptable	110	Qualitat- ive	Acceptable	APHA, 22 nd Edition. Taste
18	Total Alkalinity (caco3),, mg/l, Max	224	368	136	4.00	200	IS-3025/23:1986, Titration
19	Total Arsenic (as As), mg/l, Max	< 0.002	< 0.002	< 0.002	0.002	0.01	IS 3025/ 37:1988 R : 2003, AAS-VGA
20	Total Chromium (as Cr), mg/l, Max	< 0.04	< 0.04	< 0.04	0.04	0.05	IS-3025/52:2003, AAS- Flame
21	Total Dissolved Solids, mg/l, Max	790	820	620	25.00	500	IS 3025 /16:1984 R : 2006, Gravimetric
22	Total Hardness (c _a co ₃), mg/l, Max	520	496	352	4.00	200	IS-3025/21:1983, R-2002, EDTA
23	Turbidity, NTU, Max	6	5	6	1.0	1	IS-3025/10:1984 R-1996, Nephelometric
24	Zinc (as Zn), mg/l, Max	0.03	0.01	0.01	0.01	5.0	IS 3025/49 : 1994, R : 2009, AAS-Flame

^{*}Sampling location details and sampling date has been given in **Annexure-IV**.

Annexure - VB

GROUNDWATER QUALITY DATA (DUG WELLS) Month: May'2016

Stations: 7. Cluster-VII (GW-7), Dhansar, Date: 20/05/2016 8. Cluster-VIII (GW-8), Ghanudih, Date: 21/05/2016 9. Cluster-IX (GW-9), Jealgora, Date: 21/05/2016

Sl.	Parameter	Sa	mpling Statio	ons	Detection	IS:10500 Drinking Water	Standard / Test
No		7	8	9	Limit	Standards	Method
1	Boron (as B), mg/l, Max	< 0.20	< 0.20	< 0.20	0.20	0.5	APHA, 22 nd Edition ,Carmine
2	Colour,in Hazen Units	1	1	1	1	5	APHA, 22 nd Edition ,Pt Co. Method
3	Calcium (as Ca), mg/l, Max	130	42	64	1.60	75	IS-3025/40:1991, EDTA
4	Chloride (as Cl), mg/l, Max	76	136	52	2.00	250	IS-3025/32:1988, R-2007, Argentometric
5	Copper (as Cu), mg/l, Max	< 0.03	< 0.03	< 0.03	0.03	0.05	IS 3025/42 : 1992 R : 2009, AAS-Flame
6	Fluoride (as F) mg/l, Max	0.49	0.89	0.29	0.02	1.0	APHA, 22 nd Edition , SPADNS
7	Free Residual Chlorine, mg/l, Min	0.07	0.02	0.04	0.02	0.2	APHA, 22 nd Edition, DPD
8	Iron (as Fe), mg/l, Max	< 0.06	< 0.06	< 0.06	0.06	0.3	IS 3025 /53 : 2003, R : 2009 , AAS-Flame
9	Lead (as Pb), mg/l, Max	< 0.005	< 0.005	< 0.005	0.005	0.01	APHA, 22 nd Edition, AAS- GTA
10	Manganese (as Mn), mg/l, Max	< 0.02	< 0.02	< 0.02	0.02	0.1	IS-3025/59:2006, AAS-Flame
11	Nitrate (as NO ₃), mg/l, Max	4	17	7	0.5	45	APHA, 22 nd Edition, UV-Spectrphotometric
12	Odour	Agreeable	Agreeable	Agreeable	Qualitative	Agreeable	IS 3025 /05:1983, R-2012, Qualitative
13	pH value	8.16	7.26	7.83	0.2	6.5 to 8.5	IS-3025/11:1983, R-1996, Electrometric
14	Phenolic compounds (as C ₆ H ₅ OH), mg/l, Max	< 0.001	< 0.001	< 0.001	0.001	0.001	APHA, 22 nd Edition,4- Amino Autipyrine
15	Selenium (as Se), mg/l, Max	< 0.002	<0.002	<0.002	0.002	0.01	APHA, 22 nd Edition, AAS- GTA
16	Sulphate (as SO ₄) mg/l, Max	104	63	114	2.00	200	APHA, 22 nd Edition. Turbidity
17	Taste	Acceptable	Acceptable	Acceptable	Qualitat- ive	Acceptable	APHA, 22 nd Edition. Taste
18	Total Alkalinity (c _a co ₃),, mg/l, Max	296	104	128	4.00	200	IS-3025/23:1986, Titration
19	Total Arsenic (as As), mg/l, Max	< 0.002	< 0.002	< 0.002	0.002	0.01	IS 3025/37:1988 R: 2003, AAS-VGA
20	Total Chromium (as Cr), mg/l, Max	< 0.04	< 0.04	< 0.04	0.04	0.05	IS-3025/52:2003, AAS- Flame
21	Total Dissolved Solids, mg/l, Max	770	460	540	25.00	500	IS 3025 /16:1984 R : 2006, Gravimetric
22	Total Hardness (c _a co ₃), mg/l, Max	560	220	336	4.00	200	IS-3025/21:1983, R-2002, EDTA
23	Turbidity, NTU, Max	3	2	3	1.0	1	IS-3025/10:1984 R-1996, Nephelometric
24	Zinc (as Zn), mg/l, Max	0.02	0.08	0.03	0.01	5.0	IS 3025/49:1994, R:2009, AAS-Flame

^{*}Sampling location details and sampling date has been given in **Annexure-IV**.

Annexure - VB

GROUNDWATER QUALITY DATA (DUG WELLS) Month: May'2016

Stations: 10. Cluster-X (GW-10), Patherdih, Date: 21/05/2016 11. Cluster-XI (GW-11), Moonidih, Date: 20/05/2016 12. Cluster-XIII (GW-13), Machhayara, Date: 20/05/2016

Sl.	Parameter	Sa	mpling Statio	ons	Detection	IS:10500	Standard / Test
No		10	11	12	Limit	Drinking Water Standards	Method
1	Boron (as B), mg/l, Max	< 0.20	< 0.20	< 0.20	0.20	0.5	APHA, 22 nd Edition ,Carmine
2	Colour,in Hazen Units	2	2	1	1	5	APHA, 22 nd Edition ,Pt Co. Method
3	Calcium (as Ca), mg/l, Max	54	133	88	1.60	75	IS-3025/40:1991, EDTA
4	Chloride (as Cl), mg/l, Max	134	60	38	2.00	250	IS-3025/32:1988, R-2007, Argentometric
5	Copper (as Cu), mg/l, Max	< 0.03	< 0.03	< 0.03	0.03	0.05	IS 3025/42 : 1992 R : 2009, AAS-Flame
6	Fluoride (as F) mg/l, Max	0.55	0.25	0.65	0.02	1.0	APHA, 22 nd Edition , SPADNS
7	Free Residual Chlorine, mg/l, Min	0.03	0.08	0.03	0.02	0.2	APHA, 22 nd Edition, DPD
8	Iron (as Fe), mg/l, Max	< 0.06	< 0.06	< 0.06	0.06	0.3	IS 3025 /53 : 2003, R : 2009 , AAS-Flame
9	Lead (as Pb), mg/l, Max	< 0.005	< 0.005	< 0.005	0.005	0.01	APHA, 22 nd Edition, AAS- GTA
10	Manganese (as Mn), mg/l, Max	< 0.02	< 0.02	< 0.02	0.02	0.1	IS-3025/59:2006, AAS-Flame
11	Nitrate (as NO ₃), mg/l, Max	17	7	4	0.5	45	APHA, 22 nd Edition, UV-Spectrphotometric
12	Odour	Agreeable	Agreeable	Agreeable	Qualitative	Agreeable	IS 3025 /05:1983, R-2012, Qualitative
13	pH value	7.10	7.89	8.31	0.2	6.5 to 8.5	IS-3025/11:1983, R-1996, Electrometric
14	Phenolic compounds (as C ₆ H ₅ OH), mg/l, Max	< 0.001	< 0.001	< 0.001	0.001	0.001	APHA, 22 nd Edition,4- Amino Autipyrine
15	Selenium (as Se), mg/l, Max	< 0.002	< 0.002	<0.002	0.002	0.01	APHA, 22 nd Edition, AAS- GTA
16	Sulphate (as SO ₄) mg/l, Max	61	126	90	2.00	200	APHA, 22 nd Edition. Turbidity
17	Taste	Acceptable	Acceptable	Acceptable	Qualitat- ive	Acceptable	APHA, 22 nd Edition. Taste
18	Total Alkalinity (c _a co ₃),, mg/l, Max	80	264	504	4.00	200	IS-3025/23:1986, Titration
19	Total Arsenic (as As), mg/l, Max	< 0.002	< 0.002	< 0.002	0.002	0.01	IS 3025/37:1988 R: 2003, AAS-VGA
20	Total Chromium (as Cr), mg/l, Max	< 0.04	< 0.04	< 0.06	0.04	0.05	IS-3025/52:2003, AAS- Flame
21	Total Dissolved Solids, mg/l, Max	410	980	480	25.00	500	IS 3025 /16:1984 R: 2006, Gravimetric
22	Total Hardness (c _a co ₃), mg/l, Max	176	724	328	4.00	200	IS-3025/21:1983, R-2002, EDTA
23	Turbidity, NTU, Max	5	7	4	1.0	1	IS-3025/10:1984 R-1996, Nephelometric
24	Zinc (as Zn), mg/l, Max	0.05	0.06	0.01	0.01	5.0	IS 3025/ 49 : 1994, R : 2009, AAS-Flame

^{*}Sampling location details and sampling date has been given in **Annexure-IV**.

Annexure - VB

GROUNDWATER QUALITY DATA (DUG WELLS) Month: May'2016

Stations: 13. Cluster-XIV (GW-14), Lohapatti, Date: 20/05/2016
14. Cluster-XV (GW-15), Madhuband, Date: 20/05/2016
15. Cluster-XVI (GW-16), Dahibari, Date: 21/05/2016

Sl.	Parameter	Sa	mpling Statio		Detection	IS:10500	Standard / Test
No		13	14	15	Limit	Drinking Water Standards	Method
1	Boron (as B), mg/l, Max	< 0.20	< 0.20	< 0.20	0.20	0.5	APHA, 22 nd Edition ,Carmine
2	Colour,in Hazen Units	2	4	3	1	5	APHA, 22 nd Edition ,Pt Co. Method
3	Calcium (as Ca), mg/l, Max	72	109	46	1.60	75	IS-3025/40:1991, EDTA
4	Chloride (as Cl), mg/l, Max	80	100	62	2.00	250	IS-3025/32:1988, R-2007, Argentometric
5	Copper (as Cu), mg/l, Max	<0.03	<0.03	<0.03	0.03	0.05	IS 3025/42 : 1992 R : 2009, AAS-Flame
6	Fluoride (as F) mg/l, Max	0.37	1.03	0.27	0.02	1.0	APHA, 22 nd Edition , SPADNS
7	Free Residual Chlorine, mg/l, Min	0.04	0.07	0.02	0.02	0.2	APHA, 22 nd Edition, DPD
8	Iron (as Fe), mg/l, Max	< 0.06	< 0.06	< 0.06	0.06	0.3	IS 3025 /53 : 2003, R: 2009, AAS-Flame
9	Lead (as Pb), mg/l, Max	< 0.005	< 0.005	< 0.005	0.005	0.01	APHA, 22 nd Edition, AAS- GTA
10	Manganese (as Mn), mg/l, Max	< 0.02	< 0.02	< 0.02	0.02	0.1	IS-3025/59:2006, AAS-Flame
11	Nitrate (as NO ₃), mg/l, Max	4	5	11	0.5	45	APHA, 22 nd Edition, UV-Spectrphotometric
12	Odour	Agreeable	Agreeable	Agreeable	Qualitative	Agreeable	IS 3025 /05:1983, R-2012, Qualitative
13	pH value	8.13	7.68	7.74	0.2	6.5 to 8.5	IS-3025/11:1983, R-1996, Electrometric
14	Phenolic compounds (as C ₆ H ₅ OH), mg/l, Max	< 0.001	< 0.001	< 0.001	0.001	0.001	APHA, 22 nd Edition,4- Amino Autipyrine
15	Selenium (as Se), mg/l, Max	<0.002	<0.002	<0.002	0.002	0.01	APHA, 22 nd Edition, AAS- GTA
16	Sulphate (as SO ₄) mg/l, Max	52	167	60	2.00	200	APHA, 22 nd Edition. Turbidity
17	Taste	Acceptable	Acceptable	Acceptable	Qualitat- ive	Acceptable	APHA, 22 nd Edition. Taste
18	Total Alkalinity (c _a co ₃),, mg/l, Max	404	148	168	4.00	200	IS-3025/23:1986, Titration
19	Total Arsenic (as As), mg/l, Max	< 0.002	< 0.002	< 0.002	0.002	0.01	IS 3025/37:1988 R: 2003, AAS-VGA
20	Total Chromium (as Cr), mg/l, Max	< 0.04	< 0.04	< 0.04	0.04	0.05	IS-3025/52:2003, AAS- Flame
21	Total Dissolved Solids, mg/l, Max	450	990	370	25.00	500	IS 3025 /16:1984 R : 2006, Gravimetric
22	Total Hardness (c _a co ₃), mg/l, Max	284	640	224	4.00	200	IS-3025/21:1983, R-2002, EDTA
23	Turbidity, NTU, Max	6	13	7	1.0	1	IS-3025/10:1984 R-1996, Nephelometric
24	Zinc (as Zn), mg/l, Max	< 0.01	0.02	0.04	0.01	5.0	IS 3025/49 : 1994, R : 2009, AAS-Flame

^{*}Sampling location details and sampling date has been given in **Annexure-IV**.

Annexure - VC

GROUNDWATER QUALITY DATA (DUG WELLS) Month: August'2016

Stations: 1. Cluster-I (GW-1), Bera Village, 2. Cluster-II (GW-2), Khodovaly village, 3. Cluster-III (GW-3), Govindpur, Date: 23/08/2016

Sl.	Parameter	San	npling Statio	ons	Detection	IS:10500	Standard / Test
No		1	2	3	Limit	Drinking Water Standards	Method
1	Boron (as B), mg/l, Max	< 0.20	< 0.20	< 0.20	0.20	0.5	APHA, 22 nd Edition ,Carmine
2	Colour,in Hazen Units	2	2	3	1	5	APHA, 22 nd Edition ,PtCo. Method
3	Calcium (as Ca), mg/l, Max	88	64	53	1.60	75	IS-3025/40:1991, EDTA
4	Chloride (as Cl), mg/l, Max	70	62	122	2.00	250	IS-3025/32:1988, R-2007, Argentometric
5	Copper (as Cu), mg/l, Max	< 0.03	< 0.03	<0.03	0.03	0.05	IS 3025/42 : 1992 R : 2009, AAS-Flame
6	Fluoride (as F) mg/l, Max	1.01	1.11	1.06	0.02	1.0	APHA, 22 nd Edition , SPADNS
7	Free Residual Chlorine, mg/l, Min	0.05	0.06	0.05	0.02	0.2	APHA, 22 nd Edition, DPD
8	Iron (as Fe), mg/l, Max	< 0.06	< 0.06	< 0.06	0.06	0.3	IS 3025 /53 : 2003, R : 2009 , AAS-Flame
9	Lead (as Pb), mg/l, Max	< 0.005	< 0.005	< 0.005	0.005	0.01	APHA, 22 nd Edition, AAS- GTA
10	Manganese (as Mn), mg/l, Max	< 0.02	< 0.02	< 0.02	0.02	0.1	IS-3025/59:2006, AAS-Flame
11	Nitrate (as NO ₃), mg/l, Max	7	12	8	0.5	45	APHA, 22 nd Edition, UV-Spectrphotometric
12	Odour	Agreeable	Agreeable	Agreeable	Qualitative	Agreeable	IS 3025 /05:1983, R-2012, Qualitative
13	pH value	7.26	8.01	7.64	0.2	6.5 to 8.5	IS-3025/11:1983, R-1996, Electrometric
14	Phenolic compounds (as C ₆ H ₅ OH), mg/l, Max	< 0.001	< 0.002	< 0.001	0.001	0.001	APHA, 22 nd Edition,4- Amino Autipyrine
15	Selenium (as Se), mg/l, Max	<0.002	<0.002	< 0.002	0.002	0.01	APHA, 22 nd Edition, AAS- GTA
16	Sulphate (as SO ₄) mg/l, Max	123	224	118	2.00	200	APHA, 22 nd Edition. Turbidity
17	Taste	Acceptable	Acceptable	Acceptable	Qualitat- ive	Acceptable	APHA, 22 nd Edition. Taste
18	Total Alkalinity (c _a co ₃),, mg/l, Max	212	208	324	4.00	200	IS-3025/23:1986, Titration
19	Total Arsenic (as As), mg/l, Max	< 0.002	< 0.002	< 0.002	0.002	0.01	IS 3025/ 37:1988 R : 2003, AAS-VGA
20	Total Chromium (as Cr), mg/l, Max	< 0.04	0.046	< 0.04	0.04	0.05	IS-3025/52:2003, AAS- Flame
21	Total Dissolved Solids, mg/l, Max	700	820	780	25.00	500	IS 3025 /16:1984 R : 2006, Gravimetric
22	Total Hardness (caco3), mg/l, Max	428	424	496	4.00	200	IS-3025/21:1983, R-2002, EDTA
23	Turbidity, NTU, Max	3	4	6	1.0	1	IS-3025/10:1984 R-1996, Nephelometric
24	Zinc (as Zn), mg/l, Max	0.01	0.01	< 0.01	0.01	5.0	IS 3025/49 : 1994, R : 2009, AAS-Flame

^{*}Sampling location details and sampling date has been given in **Annexure-IV**.

GROUNDWATER QUALITY DATA (DUG WELLS) Month: August'2016

Stations: 4. Cluster-IV (GW-4), Keshalpur Village, Date: 23/08/2016

Cluster-V (GW-5), Borkiboa village,
 Cluster-VI (GW-6), Godhur,
 Date: 23/08/2016
 Date: 30/08/2016

Sl.	Parameter	Sa	mpling Statio	ons	Detection	IS:10500	Standard / Test
No		4	5	6	Limit	Drinking Water Standards	Method
1	Boron (as B), mg/l, Max	< 0.20	< 0.20	< 0.20	0.20	0.5	APHA, 22 nd Edition ,Carmine
2	Colour,in Hazen Units	5	4	2	1	5	APHA, 22 nd Edition ,Pt Co. Method
3	Calcium (as Ca), mg/l, Max	56	80	110	1.60	75	IS-3025/40:1991, EDTA
4	Chloride (as Cl), mg/l, Max	38	188	154	2.00	250	IS-3025/32:1988, R-2007, Argentometric
5	Copper (as Cu), mg/l, Max	< 0.03	< 0.03	< 0.03	0.03	0.05	IS 3025/42 : 1992 R : 2009, AAS-Flame
6	Fluoride (as F) mg/l, Max	1.34	1.24	1.08	0.02	1.0	APHA, 22 nd Edition , SPADNS
7	Free Residual Chlorine, mg/l, Min	0.04	0.08	0.09	0.02	0.2	APHA, 22 nd Edition, DPD
8	Iron (as Fe), mg/l, Max	< 0.06	< 0.06	< 0.06	0.06	0.3	IS 3025 /53 : 2003, R : 2009 , AAS-Flame
9	Lead (as Pb), mg/l, Max	< 0.005	< 0.005	< 0.005	0.005	0.01	APHA, 22 nd Edition, AAS- GTA
10	Manganese (as Mn), mg/l, Max	< 0.02	< 0.02	< 0.02	0.02	0.1	IS-3025/59:2006, AAS-Flame
11	Nitrate (as NO ₃), mg/l, Max	6	18	15	0.5	45	APHA, 22 nd Edition, UV-Spectrphotometric
12	Odour	Agreeable	Agreeable	Agreeable	Qualitative	Agreeable	IS 3025 /05:1983, R-2012, Qualitative
13	pH value	8.16	7.79	8.02	0.2	6.5 to 8.5	IS-3025/11:1983, R-1996, Electrometric
14	Phenolic compounds (as C ₆ H ₅ OH), mg/l, Max	< 0.001	< 0.001	< 0.001	0.001	0.001	APHA, 22 nd Edition,4- Amino Autipyrine
15	Selenium (as Se), mg/l, Max	< 0.002	<0.002	< 0.002	0.002	0.01	APHA, 22 nd Edition, AAS- GTA
16	Sulphate (as SO ₄) mg/l, Max	90	144	Acceptable	2.00	200	APHA, 22 nd Edition. Turbidity
17	Taste	Acceptable	Acceptable	168	Qualitat- ive	Acceptable	APHA, 22 nd Edition. Taste
18	Total Alkalinity (caco3),, mg/l, Max	204	252	416	4.00	200	IS-3025/23:1986, Titration
19	Total Arsenic (as As), mg/l, Max	< 0.002	< 0.002	< 0.002	0.002	0.01	IS 3025/ 37:1988 R : 2003, AAS-VGA
20	Total Chromium (as Cr), mg/l, Max	< 0.04	< 0.04	< 0.04	0.04	0.05	IS-3025/52:2003, AAS- Flame
21	Total Dissolved Solids, mg/l, Max	380	880	1060	25.00	500	IS 3025 /16:1984 R : 2006, Gravimetric
22	Total Hardness (c _a co ₃), mg/l, Max	172	432	452	4.00	200	IS-3025/21:1983, R-2002, EDTA
23	Turbidity, NTU, Max	12	10	4	1.0	1	IS-3025/10:1984 R-1996, Nephelometric
24	Zinc (as Zn), mg/l, Max	0.01	0.01	0.01	0.01	5.0	IS 3025/49 : 1994, R : 2009, AAS-Flame

^{*}Sampling location details and sampling date has been given in **Annexure-IV**.

GROUNDWATER QUALITY DATA (DUG WELLS) Month: August'2016

Stations: 7. Cluster-VII (GW-7), Dhansar, 8. Cluster-VIII (GW-8), Ghanudih, 9. Cluster-IX (GW-9), Jealgora, Date: 30/08/2016 Date: 30/08/2016

Sl.	Parameter	Sa	mpling Statio	ons	Detection	IS:10500 Drinking Water	Standard / Test
No		7	8	9	Limit	Standards	Method
1	Boron (as B), mg/l, Max	< 0.20	< 0.20	< 0.20	0.20	0.5	APHA, 22 nd Edition ,Carmine
2	Colour,in Hazen Units	2	1	1	1	5	APHA, 22 nd Edition ,Pt Co. Method
3	Calcium (as Ca), mg/l, Max	50	46	92	1.60	75	IS-3025/40:1991, EDTA
4	Chloride (as Cl), mg/l, Max	54	52	66	2.00	250	IS-3025/32:1988, R-2007, Argentometric
5	Copper (as Cu), mg/l, Max	< 0.03	< 0.03	< 0.03	0.03	0.05	IS 3025/42 : 1992 R : 2009, AAS-Flame
6	Fluoride (as F) mg/l, Max	0.37	0.38	1.23	0.02	1.0	APHA, 22 nd Edition , SPADNS
7	Free Residual Chlorine, mg/l, Min	0.04	0.03	0.05	0.02	0.2	APHA, 22 nd Edition, DPD
8	Iron (as Fe), mg/l, Max	< 0.06	< 0.06	< 0.06	0.06	0.3	IS 3025 /53 : 2003, R : 2009 , AAS-Flame
9	Lead (as Pb), mg/l, Max	< 0.005	< 0.005	< 0.005	0.005	0.01	APHA, 22 nd Edition, AAS- GTA
10	Manganese (as Mn), mg/l, Max	0.043	0.059	< 0.02	0.02	0.1	IS-3025/59:2006, AAS-Flame
11	Nitrate (as NO ₃), mg/l, Max	20	18	14	0.5	45	APHA, 22 nd Edition, UV-Spectrphotometric
12	Odour	Agreeable	Agreeable	Agreeable	Qualitative	Agreeable	IS 3025 /05:1983, R-2012, Qualitative
13	pH value	7.55	6.16	7.99	0.2	6.5 to 8.5	IS-3025/11:1983, R-1996, Electrometric
14	Phenolic compounds (as C ₆ H ₅ OH), mg/l, Max	< 0.001	< 0.001	< 0.001	0.001	0.001	APHA, 22 nd Edition,4- Amino Autipyrine
15	Selenium (as Se), mg/l, Max	< 0.002	<0.002	<0.002	0.002	0.01	APHA, 22 nd Edition, AAS- GTA
16	Sulphate (as SO ₄) mg/l, Max	62	60	124	2.00	200	APHA, 22 nd Edition. Turbidity
17	Taste	Acceptable	Acceptable	Acceptable	Qualitat- ive	Acceptable	APHA, 22 nd Edition. Taste
18	Total Alkalinity (c _a co ₃),, mg/l, Max	128	80	280	4.00	200	IS-3025/23:1986, Titration
19	Total Arsenic (as As), mg/l, Max	< 0.002	< 0.002	< 0.002	0.002	0.01	IS 3025/ 37:1988 R : 2003, AAS-VGA
20	Total Chromium (as Cr), mg/l, Max	< 0.04	< 0.04	< 0.04	0.04	0.05	IS-3025/52:2003, AAS- Flame
21	Total Dissolved Solids, mg/l, Max	320	340	670	25.00	500	IS 3025 /16:1984 R : 2006, Gravimetric
22	Total Hardness (c _a co ₃), mg/l, Max	176	200	400	4.00	200	IS-3025/21:1983, R-2002, EDTA
23	Turbidity, NTU, Max	3	2	2	1.0	1	IS-3025/10:1984 R-1996, Nephelometric
24	Zinc (as Zn), mg/l, Max	0.07	0.06	0.01	0.01	5.0	IS 3025/ 49 : 1994, R : 2009, AAS-Flame

^{*}Sampling location details and sampling date has been given in **Annexure-IV**.

Annexure - VC

GROUNDWATER QUALITY DATA (DUG WELLS) Month: August'2016

Stations: 10. Cluster-X (GW-10), Patherdih, Date: 30/08/2016
11. Cluster-XI (GW-11), Moonidih, Date: 24/08/2016
12. Cluster-XIII (GW-13), Machhayara, Date: 24/08/2016

Sl.	Parameter	Sa	mpling Statio	ons	Detection	IS:10500	Standard / Test
No		10	11	12	Limit	Drinking Water Standards	Method
1	Boron (as B), mg/l, Max	< 0.20	< 0.20	< 0.20	0.20	0.5	APHA, 22 nd Edition ,Carmine
2	Colour,in Hazen Units	7	3	4	1	5	APHA, 22 nd Edition ,Pt Co. Method
3	Calcium (as Ca), mg/l, Max	82	64	94	1.60	75	IS-3025/40:1991, EDTA
4	Chloride (as Cl), mg/l, Max	92	58	68	2.00	250	IS-3025/32:1988, R-2007, Argentometric
5	Copper (as Cu), mg/l, Max	< 0.03	< 0.03	< 0.03	0.03	0.05	IS 3025/42 : 1992 R : 2009, AAS-Flame
6	Fluoride (as F) mg/l, Max	0.66	0.84	1.09	0.02	1.0	APHA, 22 nd Edition , SPADNS
7	Free Residual Chlorine, mg/l, Min	0.06	0.07	0.05	0.02	0.2	APHA, 22 nd Edition, DPD
8	Iron (as Fe), mg/l, Max	< 0.06	< 0.06	< 0.06	0.06	0.3	IS 3025 /53 : 2003, R : 2009 , AAS-Flame
9	Lead (as Pb), mg/l, Max	< 0.005	< 0.005	< 0.005	0.005	0.01	APHA, 22 nd Edition, AAS- GTA
10	Manganese (as Mn), mg/l, Max	< 0.02	< 0.02	< 0.02	0.02	0.1	IS-3025/59:2006, AAS-Flame
11	Nitrate (as NO ₃), mg/l, Max	35	4	16	0.5	45	APHA, 22 nd Edition, UV-Spectrphotometric
12	Odour	Agreeable	Agreeable	Agreeable	Qualitative	Agreeable	IS 3025 /05:1983, R-2012, Qualitative
13	pH value	8.12	7.95	7.47	0.2	6.5 to 8.5	IS-3025/11:1983, R-1996, Electrometric
14	Phenolic compounds (as C ₆ H ₅ OH), mg/l, Max	< 0.001	< 0.001	< 0.001	0.001	0.001	APHA, 22 nd Edition,4- Amino Autipyrine
15	Selenium (as Se), mg/l, Max	< 0.002	< 0.002	<0.002	0.002	0.01	APHA, 22 nd Edition, AAS- GTA
16	Sulphate (as SO ₄) mg/l, Max	110	82	108	2.00	200	APHA, 22 nd Edition. Turbidity
17	Taste	Acceptable	Acceptable	Acceptable	Qualitat- ive	Acceptable	APHA, 22 nd Edition. Taste
18	Total Alkalinity (caco3),, mg/l, Max	188	356	268	4.00	200	IS-3025/23:1986, Titration
19	Total Arsenic (as As), mg/l, Max	< 0.002	< 0.002	< 0.002	0.002	0.01	IS 3025/37:1988 R: 2003, AAS-VGA
20	Total Chromium (as Cr), mg/l, Max	< 0.04	< 0.04	< 0.06	0.04	0.05	IS-3025/52:2003, AAS- Flame
21	Total Dissolved Solids, mg/l, Max	740	640	700	25.00	500	IS 3025 /16:1984 R : 2006, Gravimetric
22	Total Hardness (c _a co ₃), mg/l, Max	488	456	476	4.00	200	IS-3025/21:1983, R-2002, EDTA
23	Turbidity, NTU, Max	15	7	7	1.0	1	IS-3025/10:1984 R-1996, Nephelometric
24	Zinc (as Zn), mg/l, Max	0.01	0.02	0.01	0.01	5.0	IS 3025/ 49 : 1994, R : 2009, AAS-Flame

^{*}Sampling location details and sampling date has been given in **Annexure-IV**.

GROUNDWATER QUALITY DATA (DUG WELLS) Month: August'2016

Stations: 13. Cluster-XIV (GW-14), Lohapatti, Date: 24/08/2016
14. Cluster-XV (GW-15), Madhuband, Date: 24/08/2016
15. Cluster-XVI (GW-16), Dahibari, Date: 30/08/2016

Sl.	Parameter	Sa	mpling Statio	ons	Detection	IS:10500	Standard / Test
No		13	14	15	Limit	Drinking Water Standards	Method
1	Boron (as B), mg/l, Max	< 0.20	< 0.20	< 0.20	0.20	0.5	APHA, 22 nd Edition ,Carmine
2	Colour,in Hazen Units	1	2	2	1	5	APHA, 22 nd Edition ,Pt Co. Method
3	Calcium (as Ca), mg/l, Max	46	67	70	1.60	75	IS-3025/40:1991, EDTA
4	Chloride (as Cl), mg/l, Max	50	30	30	2.00	250	IS-3025/32:1988, R-2007, Argentometric
5	Copper (as Cu), mg/l, Max	< 0.03	< 0.03	< 0.03	0.03	0.05	IS 3025/42 : 1992 R : 2009, AAS-Flame
6	Fluoride (as F) mg/l, Max	0.40	0.81	1.05	0.02	1.0	APHA, 22 nd Edition , SPADNS
7	Free Residual Chlorine, mg/l, Min	0.02	0.03	0.03	0.02	0.2	APHA, 22 nd Edition, DPD
8	Iron (as Fe), mg/l, Max	< 0.06	< 0.06	< 0.06	0.06	0.3	IS 3025 /53 : 2003, R : 2009 , AAS-Flame
9	Lead (as Pb), mg/l, Max	< 0.005	< 0.005	< 0.005	0.005	0.01	APHA, 22 nd Edition, AAS- GTA
10	Manganese (as Mn), mg/l, Max	0.055	< 0.02	< 0.02	0.02	0.1	IS-3025/59:2006, AAS-Flame
11	Nitrate (as NO ₃), mg/l, Max	24	27	30	0.5	45	APHA, 22 nd Edition, UV-Spectrphotometric
12	Odour	Agreeable	Agreeable	Agreeable	Qualitative	Agreeable	IS 3025 /05:1983, R-2012, Qualitative
13	pH value	6.55	8.27	7.83	0.2	6.5 to 8.5	IS-3025/11:1983, R-1996, Electrometric
14	Phenolic compounds (as C ₆ H ₅ OH), mg/l, Max	<0.002	< 0.002	< 0.002	0.001	0.001	APHA, 22 nd Edition,4- Amino Autipyrine
15	Selenium (as Se), mg/l, Max	< 0.002	<0.002	<0.002	0.002	0.01	APHA, 22 nd Edition, AAS- GTA
16	Sulphate (as SO ₄) mg/l, Max	62	102	108	2.00	200	APHA, 22 nd Edition. Turbidity
17	Taste	Acceptable	Acceptable	Acceptable	Qualitat- ive	Acceptable	APHA, 22 nd Edition. Taste
18	Total Alkalinity (c _a co ₃),, mg/l, Max	64	260	192	4.00	200	IS-3025/23:1986, Titration
19	Total Arsenic (as As), mg/l, Max	< 0.002	< 0.002	<0.002	0.002	0.01	IS 3025/37:1988 R: 2003, AAS-VGA
20	Total Chromium (as Cr), mg/l, Max	< 0.04	< 0.04	< 0.04	0.04	0.05	IS-3025/52:2003, AAS- Flame
21	Total Dissolved Solids, mg/l, Max	320	570	590	25.00	500	IS 3025 /16:1984 R: 2006, Gravimetric
22	Total Hardness (caco3), mg/l, Max	172	368	364	4.00	200	IS-3025/21:1983, R-2002, EDTA
23	Turbidity, NTU, Max	2	3	4	1.0	1	IS-3025/10:1984 R-1996, Nephelometric
24	Zinc (as Zn), mg/l, Max	0.10	0.01	0.01	0.01	5.0	IS 3025/ 49 : 1994, R : 2009, AAS-Flame

^{*}Sampling location details and sampling date has been given in **Annexure-IV**.

GROUNDWATER QUALITY DATA (DUG WELLS) Month: November'2016

Stations: 1. Cluster-I (GW-1), Bera Village, 2. Cluster-II (GW-2), Khodovaly village, 3. Cluster-III (GW-3), Govindpur, Date: 23/11/2016

Sl.	Parameter	San	npling Statio	ons	Detection	IS:10500 Drinking Water	Standard / Test
No		1	2	3	Limit	Standards	Method
1	Boron (as B), mg/l, Max	< 0.20	< 0.20	< 0.20	0.20	0.5	APHA, 22 nd Edition ,Carmine
2	Colour,in Hazen Units	3	3	2	1	5	APHA, 22 nd Edition ,PtCo. Method
3	Calcium (as Ca), mg/l, Max	59.2	86.4	94.4	1.60	75	IS-3025/40:1991, EDTA
4	Chloride (as Cl), mg/l, Max	66	106	88	2.00	250	IS-3025/32:1988, R-2007, Argentometric
5	Copper (as Cu), mg/l, Max	< 0.03	< 0.03	<0.03	0.03	0.05	IS 3025/42 : 1992 R : 2009, AAS-Flame
6	Fluoride (as F) mg/l, Max	0.39	0.80	1.00	0.02	1.0	APHA, 22 nd Edition , SPADNS
7	Free Residual Chlorine, mg/l, Min	< 0.02	< 0.02	< 0.02	0.02	0.2	APHA, 22 nd Edition, DPD
8	Iron (as Fe), mg/l, Max	< 0.06	< 0.06	< 0.06	0.06	0.3	IS 3025 /53 : 2003, R : 2009 , AAS-Flame
9	Lead (as Pb), mg/l, Max	< 0.005	< 0.005	< 0.005	0.005	0.01	APHA, 22 nd Edition, AAS- GTA
10	Manganese (as Mn), mg/l, Max	< 0.02	< 0.02	< 0.02	0.02	0.1	IS-3025/59:2006, AAS-Flame
11	Nitrate (as NO ₃), mg/l, Max	10.19	1.33	2.66	0.5	45	APHA, 22 nd Edition, UV-Spectrphotometric
12	Odour	Agreeable	Agreeable	Agreeable	Qualitative	Agreeable	IS 3025 /05:1983, R-2012, Qualitative
13	pH value	8.35	8.18	8.04	0.2	6.5 to 8.5	IS-3025/11:1983, R-1996, Electrometric
14	Phenolic compounds (as C ₆ H ₅ OH), mg/l, Max	< 0.001	< 0.002	< 0.001	0.001	0.001	APHA, 22 nd Edition,4- Amino Autipyrine
15	Selenium (as Se), mg/l, Max	<0.002	<0.002	<0.002	0.002	0.01	APHA, 22 nd Edition, AAS- GTA
16	Sulphate (as SO ₄) mg/l, Max	68	136	102	2.00	200	APHA, 22 nd Edition. Turbidity
17	Taste	Acceptable	Acceptable	Acceptable	Qualitat- ive	Acceptable	APHA, 22 nd Edition. Taste
18	Total Alkalinity (caco3),, mg/l, Max	128	200	304	4.00	200	IS-3025/23:1986, Titration
19	Total Arsenic (as As), mg/l, Max	< 0.002	< 0.002	< 0.002	0.002	0.01	IS 3025/37:1988 R: 2003, AAS-VGA
20	Total Chromium (as Cr), mg/l, Max	<0.04	< 0.04	< 0.04	0.04	0.05	IS-3025/52:2003, AAS- Flame
21	Total Dissolved Solids, mg/l, Max	446	618	704	25.00	500	IS 3025 /16:1984 R: 2006, Gravimetric
22	Total Hardness (caco3), mg/l, Max	220	440	460	4.00	200	IS-3025/21:1983, R-2002, EDTA
23	Turbidity, NTU, Max	4	4	3	1.0	1	IS-3025/10:1984 R-1996, Nephelometric
24	Zinc (as Zn), mg/l, Max	0.01	0.01	0.01	0.01	5.0	IS 3025/49 : 1994, R : 2009, AAS-Flame

^{*}Sampling location details and sampling date has been given in **Annexure-IV**.

GROUNDWATER QUALITY DATA (DUG WELLS) Month: November'2016

Stations: 4. Cluster-IV (GW-4), Keshalpur Village, Date: 28/11/2016

Cluster-V (GW-5), Borkiboa village,
 Cluster-VI (GW-6), Godhur,
 Date: 28/11/2016

Sl.	Parameter	Sa	mpling Statio	ons	Detection	IS:10500	Standard / Test
No		4	5	6	Limit	Drinking Water Standards	Method
1	Boron (as B), mg/l, Max	< 0.20	< 0.20	< 0.20	0.20	0.5	APHA, 22 nd Edition ,Carmine
2	Colour,in Hazen Units	2	2	3	1	5	APHA, 22 nd Edition ,Pt Co. Method
3	Calcium (as Ca), mg/l, Max	60.8	65.6	51.2	1.60	75	IS-3025/40:1991, EDTA
4	Chloride (as Cl), mg/l, Max	76	70	122	2.00	250	IS-3025/32:1988, R-2007, Argentometric
5	Copper (as Cu), mg/l, Max	< 0.03	< 0.03	< 0.03	0.03	0.05	IS 3025/42 : 1992 R : 2009, AAS-Flame
6	Fluoride (as F) mg/l, Max	0.47	0.81	0.81	0.02	1.0	APHA, 22 nd Edition , SPADNS
7	Free Residual Chlorine, mg/l, Min	< 0.02	< 0.02	< 0.02	0.02	0.2	APHA, 22 nd Edition, DPD
8	Iron (as Fe), mg/l, Max	< 0.06	< 0.06	< 0.06	0.06	0.3	IS 3025 /53 : 2003, R : 2009 , AAS-Flame
9	Lead (as Pb), mg/l, Max	< 0.005	< 0.005	< 0.005	0.005	0.01	APHA, 22 nd Edition, AAS- GTA
10	Manganese (as Mn), mg/l, Max	< 0.02	< 0.02	< 0.02	0.02	0.1	IS-3025/59:2006, AAS-Flame
11	Nitrate (as NO ₃), mg/l, Max	9.30	1.33	3.10	0.5	45	APHA, 22 nd Edition, UV-Spectrphotometric
12	Odour	Agreeable	Agreeable	Agreeable	Qualitative	Agreeable	IS 3025 /05:1983, R-2012, Qualitative
13	pH value	8.57	8.31	8.51	0.2	6.5 to 8.5	IS-3025/11:1983, R-1996, Electrometric
14	Phenolic compounds (as C ₆ H ₅ OH), mg/l, Max	< 0.001	< 0.001	< 0.001	0.001	0.001	APHA, 22 nd Edition,4- Amino Autipyrine
15	Selenium (as Se), mg/l, Max	< 0.002	<0.002	<0.002	0.002	0.01	APHA, 22 nd Edition, AAS- GTA
16	Sulphate (as SO ₄) mg/l, Max	58	41	Acceptable	2.00	200	APHA, 22 nd Edition. Turbidity
17	Taste	Acceptable	Acceptable	260	Qualitat- ive	Acceptable	APHA, 22 nd Edition. Taste
18	Total Alkalinity (caco3),, mg/l, Max	156	240	252	4.00	200	IS-3025/23:1986, Titration
19	Total Arsenic (as As), mg/l, Max	< 0.002	< 0.002	< 0.002	0.002	0.01	IS 3025/ 37:1988 R : 2003, AAS-VGA
20	Total Chromium (as Cr), mg/l, Max	< 0.04	< 0.04	< 0.04	0.04	0.05	IS-3025/52:2003, AAS- Flame
21	Total Dissolved Solids, mg/l, Max	446	466	834	25.00	500	IS 3025 /16:1984 R: 2006, Gravimetric
22	Total Hardness (caco3), mg/l, Max	250	260	540	4.00	200	IS-3025/21:1983, R-2002, EDTA
23	Turbidity, NTU, Max	4	3	4	1.0	1	IS-3025/10:1984 R-1996, Nephelometric
24	Zinc (as Zn), mg/l, Max	0.02	0.02	<0.01	0.01	5.0	IS 3025/49:1994, R:2009, AAS-Flame

^{*}Sampling location details and sampling date has been given in **Annexure-IV**.

GROUNDWATER QUALITY DATA (DUG WELLS) Month: November'2016

Stations: 7. Cluster-VII (GW-7), Dhansar, Date: 28/11/2016 8. Cluster-VIII (GW-8), Ghanudih, Date: 28/11/2016 9. Cluster-IX (GW-9), Jealgora, Date: 29/11/2016

Sl.	Parameter	Sa	mpling Statio	ons	Detection	IS:10500	Standard / Test
No		7	8	9	Limit	Drinking Water Standards	Method
1	Boron (as B), mg/l, Max	< 0.20	< 0.20	< 0.20	0.20	0.5	APHA, 22 nd Edition ,Carmine
2	Colour,in Hazen Units	3	2	3	1	5	APHA, 22 nd Edition ,Pt Co. Method
3	Calcium (as Ca), mg/l, Max	33.6	110.4	33.6	1.60	75	IS-3025/40:1991, EDTA
4	Chloride (as Cl), mg/l, Max	58	64	58	2.00	250	IS-3025/32:1988, R-2007, Argentometric
5	Copper (as Cu), mg/l, Max	< 0.03	< 0.03	< 0.03	0.03	0.05	IS 3025/42 : 1992 R : 2009, AAS-Flame
6	Fluoride (as F) mg/l, Max	0.19	0.48	0.18	0.02	1.0	APHA, 22 nd Edition , SPADNS
7	Free Residual Chlorine, mg/l, Min	< 0.02	< 0.02	< 0.02	0.02	0.2	APHA, 22 nd Edition, DPD
8	Iron (as Fe), mg/l, Max	< 0.06	< 0.06	< 0.06	0.06	0.3	IS 3025 /53 : 2003, R : 2009 , AAS-Flame
9	Lead (as Pb), mg/l, Max	< 0.005	< 0.005	< 0.005	0.005	0.01	APHA, 22 nd Edition, AAS- GTA
10	Manganese (as Mn), mg/l, Max	0.10	< 0.02	0.10	0.02	0.1	IS-3025/59:2006, AAS-Flame
11	Nitrate (as NO ₃), mg/l, Max	9.30	7.09	7.53	0.5	45	APHA, 22 nd Edition, UV-Spectrphotometric
12	Odour	Agreeable	Agreeable	Agreeable	Qualitative	Agreeable	IS 3025 /05:1983, R-2012, Qualitative
13	pH value	7.90	7.93	7.85	0.2	6.5 to 8.5	IS-3025/11:1983, R-1996, Electrometric
14	Phenolic compounds (as C ₆ H ₅ OH), mg/l, Max	< 0.001	< 0.001	< 0.001	0.001	0.001	APHA, 22 nd Edition,4- Amino Autipyrine
15	Selenium (as Se), mg/l, Max	< 0.002	< 0.002	< 0.002	0.002	0.01	APHA, 22 nd Edition, AAS- GTA
16	Sulphate (as SO ₄) mg/l, Max	63	132	63	2.00	200	APHA, 22 nd Edition. Turbidity
17	Taste	Acceptable	Acceptable	Acceptable	Qualitat- ive	Acceptable	APHA, 22 nd Edition. Taste
18	Total Alkalinity (c _a co ₃),, mg/l, Max	32	228	32	4.00	200	IS-3025/23:1986, Titration
19	Total Arsenic (as As), mg/l, Max	< 0.002	< 0.002	< 0.002	0.002	0.01	IS 3025/ 37:1988 R : 2003, AAS-VGA
20	Total Chromium (as Cr), mg/l, Max	< 0.04	< 0.04	< 0.04	0.04	0.05	IS-3025/52:2003, AAS- Flame
21	Total Dissolved Solids, mg/l, Max	278	602	276	25.00	500	IS 3025 /16:1984 R: 2006, Gravimetric
22	Total Hardness (caco3), mg/l, Max	120	440	120	4.00	200	IS-3025/21:1983, R-2002, EDTA
23	Turbidity, NTU, Max	4	4	4	1.0	1	IS-3025/10:1984 R-1996, Nephelometric
24	Zinc (as Zn), mg/l, Max	0.13	<0.01	0.12	0.01	5.0	IS 3025/49 : 1994, R : 2009, AAS-Flame

^{*}Sampling location details and sampling date has been given in **Annexure-IV**.

Annexure - VD

GROUNDWATER QUALITY DATA (DUG WELLS) Month: November'2016

Stations: 10.Cluster-X (GW-10), Patherdih, 11. Cluster-XI (GW-11), Moonidih, 12. Cluster-XIII (GW-13), Machhayara, Date: 29/11/2016

Sl.	Parameter	Sa	mpling Statio	ons	Detection	IS:10500	Standard / Test
No		10	11	12	Limit	Drinking Water Standards	Method
1	Boron (as B), mg/l, Max	< 0.20	<0.20	<0.20	0.20	0.5	APHA, 22 nd Edition ,Carmine
2	Colour,in Hazen Units	2	3	2	1	5	APHA, 22 nd Edition ,Pt Co. Method
3	Calcium (as Ca), mg/l, Max	112	105.6	115.2	1.60	75	IS-3025/40:1991, EDTA
4	Chloride (as Cl), mg/l, Max	64	82	100	2.00	250	IS-3025/32:1988, R-2007, Argentometric
5	Copper (as Cu), mg/l, Max	< 0.03	< 0.03	< 0.03	0.03	0.05	IS 3025/42 : 1992 R : 2009, AAS-Flame
6	Fluoride (as F) mg/l, Max	0.48	0.51	0.47	0.02	1.0	APHA, 22 nd Edition , SPADNS
7	Free Residual Chlorine, mg/l, Min	< 0.02	< 0.02	< 0.02	0.02	0.2	APHA, 22 nd Edition, DPD
8	Iron (as Fe), mg/l, Max	< 0.06	< 0.06	< 0.06	0.06	0.3	IS 3025 /53 : 2003, R : 2009 , AAS-Flame
9	Lead (as Pb), mg/l, Max	< 0.005	< 0.005	< 0.005	0.005	0.01	APHA, 22 nd Edition, AAS- GTA
10	Manganese (as Mn), mg/l, Max	< 0.02	< 0.02	0.06	0.02	0.1	IS-3025/59:2006, AAS-Flame
11	Nitrate (as NO ₃), mg/l, Max	7.53	2.66	11.96	0.5	45	APHA, 22 nd Edition, UV-Spectrphotometric
12	Odour	Agreeable	Agreeable	Agreeable	Qualitative	Agreeable	IS 3025 /05:1983, R-2012, Qualitative
13	pH value	8.06	8.04	8.11	0.2	6.5 to 8.5	IS-3025/11:1983, R-1996, Electrometric
14	Phenolic compounds (as C ₆ H ₅ OH), mg/l, Max	< 0.001	< 0.001	< 0.001	0.001	0.001	APHA, 22 nd Edition,4- Amino Autipyrine
15	Selenium (as Se), mg/l, Max	<0.002	<0.002	<0.002	0.002	0.01	APHA, 22 nd Edition, AAS- GTA
16	Sulphate (as SO ₄) mg/l, Max	134	230	60	2.00	200	APHA, 22 nd Edition. Turbidity
17	Taste	Acceptable	Acceptable	Acceptable	Qualitat- ive	Acceptable	APHA, 22 nd Edition. Taste
18	Total Alkalinity (c _a co ₃),, mg/l, Max	220	408	204	4.00	200	IS-3025/23:1986, Titration
19	Total Arsenic (as As), mg/l, Max	<0.002	<0.002	< 0.002	0.002	0.01	IS 3025/ 37:1988 R : 2003, AAS-VGA
20	Total Chromium (as Cr), mg/l, Max	< 0.04	< 0.04	< 0.06	0.04	0.05	IS-3025/52:2003, AAS- Flame
21	Total Dissolved Solids, mg/l, Max	602	902	618	25.00	500	IS 3025 /16:1984 R: 2006, Gravimetric
22	Total Hardness (c _a co ₃), mg/l, Max	440	780	480	4.00	200	IS-3025/21:1983, R-2002, EDTA
23	Turbidity, NTU, Max	4	3	2	1.0	1	IS-3025/10:1984 R-1996, Nephelometric
24	Zinc (as Zn), mg/l, Max	0.01	0.01	< 0.01	0.01	5.0	IS 3025/49 : 1994, R : 2009, AAS-Flame

^{*}Sampling location details and sampling date has been given in **Annexure-IV**.

GROUNDWATER QUALITY DATA (DUG WELLS) Month: November'2016

Stations: 13. Cluster-XIV (GW-14), Lohapatti, Date: 28/11/2016
14. Cluster-XV (GW-15), Madhuband, Date: 28/11/2016
15. Cluster-XVI (GW-16), Dahibari, Date: 29/11/2016

Sl.	Parameter	Sa	mpling Statio	ons	Detection	IS:10500	Standard / Test
No		13	14	15	Limit	Drinking Water Standards	Method
1	Boron (as B), mg/l, Max	< 0.20	< 0.20	< 0.20	0.20	0.5	APHA, 22 nd Edition ,Carmine
2	Colour,in Hazen Units	2	3	3	1	5	APHA, 22 nd Edition ,Pt Co. Method
3	Calcium (as Ca), mg/l, Max	59.2	65.6	76.8	1.60	75	IS-3025/40:1991, EDTA
4	Chloride (as Cl), mg/l, Max	68	42	60	2.00	250	IS-3025/32:1988, R-2007, Argentometric
5	Copper (as Cu), mg/l, Max	< 0.03	< 0.03	< 0.03	0.03	0.05	IS 3025/42 : 1992 R : 2009, AAS-Flame
6	Fluoride (as F) mg/l, Max	0.25	0.34	0.28	0.02	1.0	APHA, 22 nd Edition , SPADNS
7	Free Residual Chlorine, mg/l, Min	< 0.02	< 0.02	< 0.02	0.02	0.2	APHA, 22 nd Edition, DPD
8	Iron (as Fe), mg/l, Max	< 0.06	< 0.06	< 0.06	0.06	0.3	IS 3025 /53 : 2003, R : 2009 , AAS-Flame
9	Lead (as Pb), mg/l, Max	< 0.005	< 0.005	< 0.005	0.005	0.01	APHA, 22 nd Edition, AAS- GTA
10	Manganese (as Mn), mg/l, Max	0.055	< 0.02	< 0.02	0.02	0.1	IS-3025/59:2006, AAS-Flame
11	Nitrate (as NO ₃), mg/l, Max	12.40	0.89	1.77	0.5	45	APHA, 22 nd Edition, UV-Spectrphotometric
12	Odour	Agreeable	Agreeable	Agreeable	Qualitative	Agreeable	IS 3025 /05:1983, R-2012, Qualitative
13	pH value	8.42	8.21	8.02	0.2	6.5 to 8.5	IS-3025/11:1983, R-1996, Electrometric
14	Phenolic compounds (as C ₆ H ₅ OH), mg/l, Max	< 0.002	< 0.002	< 0.002	0.001	0.001	APHA, 22 nd Edition,4- Amino Autipyrine
15	Selenium (as Se), mg/l, Max	< 0.002	< 0.002	<0.002	0.002	0.01	APHA, 22 nd Edition, AAS- GTA
16	Sulphate (as SO ₄) mg/l, Max	55	90	170	2.00	200	APHA, 22 nd Edition. Turbidity
17	Taste	Acceptable	Acceptable	Acceptable	Qualitat- ive	Acceptable	APHA, 22 nd Edition. Taste
18	Total Alkalinity (caco3),, mg/l, Max	124	264	76	4.00	200	IS-3025/23:1986, Titration
19	Total Arsenic (as As), mg/l, Max	< 0.002	< 0.002	< 0.002	0.002	0.01	IS 3025/37:1988 R: 2003, AAS-VGA
20	Total Chromium (as Cr), mg/l, Max	< 0.04	< 0.04	< 0.04	0.04	0.05	IS-3025/52:2003, AAS- Flame
21	Total Dissolved Solids, mg/l, Max	424	518	428	25.00	500	IS 3025 /16:1984 R: 2006, Gravimetric
22	Total Hardness (caco3), mg/l, Max	230	370	300	4.00	200	IS-3025/21:1983, R-2002, EDTA
23	Turbidity, NTU, Max	4	4	4	1.0	1	IS-3025/10:1984 R-1996, Nephelometric
24	Zinc (as Zn), mg/l, Max	< 0.01	0.03	0.03	0.01	5.0	IS 3025/ 49 : 1994, R : 2009, AAS-Flame

^{*}Sampling location details and sampling date has been given in **Annexure-IV**.

Abbreviations

AMSL: Above mean sea level

Avg.: Average

APT: Aquifer Pumping Test

BCCL: Bharat Coking Coal Ltd.

bgl: Below Ground Level

Buffer zone: periphery of the 10 km radius from the project boundary

Core zone: Project / mine / colliery boundary (leasehold area)

CMPDI: Central Mine Plan & Design Institute

DVC: Damodar Valley Corporation

DTW: Depth to water level

GW: Groundwater

IMD: Indian Meteorological Division

JCF: Jharia Coalfield

RCF: Raniganj Coalfield

MADA: Mineral Area Development Authority

MCM: Million Cubic Meter

MGD: Million Gallon per day

NTU: Nephlometric Turbidity unit

OC / UG: Opencast / Underground

OCP / UGP: Opencast Project / Underground Project

RL: Reduced Level

RWH: Rainwater Harvesting

FF: Fire Fighting

BHARAT COKING COAL LIMITED

CSR BUDGET AND EXPENDITURE for FY 2016-17

	E	Expenditure under CSR for the year 20	016-17	
S. No.	CSR Project or Activity identified	Sector in which the project is covered	Amount spent on the projects or programs Sub-heads:(1) Direct Expenditure on projects or programs(2) Overheads: (□ lakhs)	
			Direct	Overheads
1	Construction of toilets in various school in Paschimi Singhbhum District of Jharkhand.	Eradicating hunger, poverty and malnutrition, promoting health care including preventive health care and sanitation including contribution to Swach Bharat Kosh set-up by the Central Government for the promotion of sanitation and making available safe drinking water	389.32	3.00
2	Construction of toilets in various school in Bokaro District of Jharkhand.	Eradicating hunger, poverty and malnutrition, promoting health care including preventive health care and sanitation including contribution to Swach Bharat Kosh set-up by the Central Government for the promotion of sanitation and making available safe drinking water	8.15	
3	Construction of toilet in various school in Dumka District of Jharkhand.	Eradicating hunger, poverty and malnutrition, promoting health care including preventive health care and sanitation including contribution to Swach Bharat Kosh set-up by the Central Government for the promotion of sanitation and making available safe drinking water	341.96	
4	Construction of toilet in various school in Gumla District of Jharkhand.	Eradicating hunger, poverty and malnutrition, promoting health care including preventive health care and sanitation including contribution to Swach Bharat Kosh set-up by the Central Government for the promotion of sanitation and making available safe drinking water	68.77	
5	Construction of toilet in various schools in Dhanbad District	Eradicating hunger, poverty and malnutrition, promoting health care including preventive health care and sanitation including contribution to Swach Bharat Kosh set-up by the Central Government for the	1.17	

		promotion of sanitation and making available safe drinking water		
6	Construction of toilet in various schools in Simdega District of Jharkhand.	Eradicating hunger, poverty and malnutrition, promoting health care including preventive health care and sanitation including contribution to Swach Bharat Kosh set-up by the Central Government for the promotion of sanitation and making available safe drinking water	132.02	
7	Construction of toilets in various schools in Purbi Singhbhum district of Jharkhand.	Eradicating hunger, poverty and malnutrition, promoting health care including preventive health care and sanitation including contribution to Swach Bharat Kosh set-up by the Central Government for the promotion of sanitation and making available safe drinking water	2.00	
8	Constn. of Toilets in various School in Koderma District of Jharkhand.	Eradicating hunger, poverty and malnutrition, promoting health care including preventive health care and sanitation including contribution to Swach Bharat Kosh set-up by the Central Government for the promotion of sanitation and making available safe drinking water	16.91	
9	SVA LIABILITY	Eradicating hunger, poverty and malnutrition, promoting health care including preventive health care and sanitation including contribution to Swach Bharat Kosh set-up by the Central Government for the promotion of sanitation and making available safe drinking water	737.86	
10	SVA LIABILITY reversed	Eradicating hunger, poverty and malnutrition, promoting health care including preventive health care and sanitation including contribution to Swach Bharat Kosh set-up by the Central Government for the promotion of sanitation and making available safe drinking water	(1,022.52)	
		Total Total	675.63	3.00
	G	rand Total	678.0	53

BHARAT COKING COAL LIMITED									
		CSR BUDGET AND EXPENDITURE							
Year CSR Budget (Rs in lakh)		Projects/ Activities	Expenditure incurred (In Rs. Lakhs)						
		Drinking Water/ Water Supply	278						
		Education	20						
		Infrastructure Development	351.15						
2042.44	2050	Skill Development	82						
2013-14	3050	Medical/Healthcare	49						
		Others (Uttrakhand Chief Minister Relief fund)	2000						
		Total of 2013-14	2780.15						
		Drinking Water/ Water Supply & Sanitation	4.69						
		Education	2.87						
	3080	Infrastructure Development	244.9						
2044 45		Skill Development	55.73						
2014-15	3080	Medical/Healthcare	32.55						
		Forestry & Environment	73.43						
		Others	18.29						
		PMNRF	1000						
		Total of 2014-15	1432.46						
		Drinking Water/ Water Supply & Sanitation	3.33						
		Swachh Vidyalaya Abhiyan	5868.51						
		Education	17.01						
		Infrastructure Development	161.75						
		Skill Development	0.12						
		Medical/Healthcare	33.06						
2015-16	3300	Forestry & Environment	2.94						
2010-10	3300	Conservation of Natural resources	63.76						
		Others	13.23						
		Transfer of CSR Expenditure spent by BCCL CSR Budget allotted by CIL (CIL the Holding Company has also incurred CSR expenditure to the tune of Rs.10.97 crore through BCCL, which has been borne and accounted for the books of CIL)	-1096.58						
		Total of 2015-16	5067.13						

CSR ACTIVITY PLAN OF CLUSTER – X

AS PER

EC CONDITION (SPECIFIC CONDITION-XLII): Details of transportation, CSR, R&R and implementation of environmental action plan for each of the 17 clusters should be brought out in a booklet for and submitted to Ministry.

MAY, 2017

INTRODUCTION

Coal India has adopted CSR as a strategic tool for sustainable growth. For Coal India in the present context, CSR means not only investment of funds for Social Activity but also Integration of Business processes with Social processes. Even much before the issue of CSR became global concern; Coal India was aware of its Corporate Social Responsibility and was fulfilling the aspiration of the Society through well-defined "Community Development Policy" within the periphery of 8 Kms. of the Project sites. This has resulted into a harmonious relationship between Coal India and the peripheral Communities.

Coal India has identified land oustees, PAP and those staying within the radius of 25 Kms of the Project as primary beneficiaries. Poor and needy section of the society living in different parts of India are second beneficiaries. For carrying out CSR activities, 80% of the budgeted amount are be spent within the radius of 25 Km of the Project Site/Mines/Area HQ/Company HQ and 20% of the budget to be spent within the States in which operating.

SCOPE

As per Schedule VII Section 135 of New Companies Act 2013 the following should be the Scope of Activities under Corporate Social Activities:

- i. Eradicating hunger, poverty and malnutrition, promoting healthcare including preventive health care and sanitation and making available safe drinking water.
- ii. Promoting education, including special education and employment enhancing vocation skills especially among children, women, elderly, and differently able and livelihood enhancement projects;
- iii. Promoting gender equality, empowering women, setting up homes and hostels for women and orphans, setting up old age homes, day care centers and such other facilities for senior citizens and measures for reducing inequalities faced by socially and economically backward groups;
- iv. Ensuring environmental sustainability, ecological balance, protection of Flora and Fauna, animal welfare, agro-forestry, conservation of natural resources and maintaining quality of soil, air and water;
- v. Protection of national heritage, art and culture including restoration of buildings and sites of historical importance and works of art; setting up public libraries, promotion and development of traditional arts and handicrafts;
- vi. Measures for the benefit of armed forces veterans, war widows and their dependents
- vii. Training to promote rural sports, nationally recognized sports, Paralympics sports and Olympic sports;
- viii. Contribution to the Prime Minister's National Relief Fund or any other fund set up by the Central Government for socio-economic development and relief and welfare of the Scheduled Castes, the Scheduled Tribes, other backward classes, minorities and women;
 - ix. Contributions or funds provided to technology incubators located within academic institutions which are approved by the Central Government;
 - x. Rural development projects

SOURCE OF FUND

The fund for the CSR should be allocated based on 2% of the average net profit of the Company for the three immediate preceding financial years or Rs. 2.00 per tone of Coal Production of previous year whichever is higher.

CURRENT STATUS

Healthcare: Annual CSR (Healthcare) Expenditure for the year 2015-16 and 2016-17.

I. Mobile Medical Van (MMV):

S. No.	Year (financial year)	No. of Mobile Medical VanCamp	Beneficiaries	Amount (inRs.)	Remarks
1	2015-16	229	7012	215927.76	Till Dec. 2016

II. General Medical Camps:

S. No.	Year (financial	Name of Medical Camp	Beneficiaries	Date
	year)			
1.	2015-16	Family Planning Camp	33	03.02.2016
2.	2013-10	Family Planning Camp	40	16.02.2016

Highlights of CSR Work under taken during 2015-16 and 2016-17 at Cluster-X

S. No.	Details	No. of units		Total Amount (in Rs.)	Remarks
		Girls	Boys		
1.	Construction of toilets in various schools in Saraikela-Kharsawan district of Jharkhand under "Swachh Vidyalaya Abhiyaan" under CSR activities of BCCL.	89	89	29,548,000	Work was done by state government.
	Total	-	178	29,548,000	

PROPOSED STATUS

CSR Work to be under taken during 2017-18 at Cluster- X

S. No.	Details	Remarks	
1.	Construction of Marriage/Multipurpose Hall in	Proposed activity	
	Mayurdubhi (मयुरदुभी) village in Amai Nagar (आमाई		
	नगर(Panchayat of Block Chandankyari		

C.S.R. PERFORMANCE REPORT MONTHWISE April 2015 to December 2016 BHowrah REGIONAL HOSPITAL. E.J. AREA.

MOBILE MEDICAL VAN.

Date: 29.04.2016

SL.NO.	МОИТН	NO.OF.CAMP	NO.OF.BENEFICIARIES	TOTAL EXPENDITURE
1,	April 15	26	1122	₹ 39,171.33
2,	May	25	937	₹ 35,270.12
3.	June .	25	941	₹ 32,950.08
4.	July	27	1028	₹ 38,685.08
5.	- August	25	1003	₹ 31,288.24
6.	September	26	634	₹ 17,211.73
7.	October	24	443	₹ 7,963.19
8.	November	24	517	₹ 7870.23
9.	December	27	387	₹ 5,517.76
10.	January 16			
11.	. February			
12.	March			
	Total	229	7012	₹ 2,15,927.76

Dy.C.M.O. I/C Sudamdih R/ Hospital E.J.Area.

NAME OF VILLAGES COVERED UNDER CSR/MMV PROGRAMME

E.J. AREA - VILLAGES

- 1. Bhowrah 19 No. Basti.
- 2. Parghabad Basti
- 3. Supker Basti
- 4. Manjhi Basti.
- 5. Mohubani Basti.
- 6. Sheobabudih
- 7. Bhowrah 7No Basti.
- 8. Bhowrah 4 No Basti.
- 9. Bhowrah Jahaj Tand.
- 10. Thana Basti.
- 11. Manpur Basti.
- 12. Amlabad Basti.
- 13. New Riverside Basti.
- 14. Gourkhutti Basti.
- 15. Sawardih Basti
- 16. Hattala Basti.

Dy.C.M.O. I/C Sudamdih R/Hospital 29999

FAMILY PLANNING CAMP E.J.AREA

1. Sudamdih R/ Hospital date - 0 3.02.2016. Beneficiaries- 33

2. Bhowrah R/ Hospital date - 16.02.2016 Beneficiaries -40

Dy.C.M.O

Sudamdih R / Hospital

Vegetation Cover Mapping of Jharia Coalfield based on Satellite Data of the Year- 2016

Submitted to

Bharat Coking Coal Ltd (BCCL)

Dhanbad

March 2017

Vegetation Cover Mapping of Jharia Coalfield based on Satellite Data of the Year- 2016

March-2017

Document Control Sheet

(1) Job No. RSC/561410027 **Publication Date** March 2017 (2) (3) Number of Pages 49 (4) Number of Figures 6 (5) Number of Tables 10 (6) Number of Plates 17 (7) Title of Report Vegetation cover mapping of Jharia Coalfield based on satellite data for the year 2016. (8) Aim of the Report To prepare Land use and vegetation cover map of Jharia Coalfield on 1:50000 scale based on satellite data for monitoring the impact of coal mining on land use pattern and vegetation cover & also to prepare cluster wise Land use/ Cover maps falling under Jharia Coalfield. (9) Executing Unit Remote Sensing Cell, **Geomatics Division** Central Mine Planning & Design Institute Limited, Gondwana Place, Kanke Road, Ranchi 834008 (10) User Agency Coal India Ltd.(CIL) / Bharat Coking Coal Ltd.(BCCL) (11) Authors Ms Ayesha Parida, Assistant Manager (Remote Sensing) **Restricted Circulation** (12) Security Restriction 5 (13) No. of Copies

(14) Distribution Statement

Official

Contents

_			Page No.
List o	ument Coof Figure of Table of Plates	S	I iii iii iii
1.0	Intro	duction	1 - 4
	1.1 1.2 1.3 1.4 1.5	Objectives Location and Accessibility	
2.0	Rem	ote Sensing Concept & Methodology	5 - 17
	2.1 2.2 2.3 2.4 2.5 2.6	Data Source	g
3.0	Lan	d use / Vegetation Cover Mapping	18- 28
4.0	3.1 3.2 3.3 3.4 Concl	Introduction Land use / Vegetation Cover Classification Data Analysis & Change Detection 3.3.1 Vegetation Cover 3.3.2 Mining Area 3.3.3 Agricultural Land 3.3.4 Wasteland 3.3.5 Settlements 3.3.6 Water Bodies Data analysis of clusters under Jharia Coalfield lusion and Recommendations	29- 30
		Conclusion ecommendations	

List of Figures		
2.0	Location Map of Jharia Coal Field.	4
2.1	Remote Sensing Radiation system	5
2.2	2 Electromagnetic Spectrum.	6
2.3	Expanded diagram of the visible and infrared regions (upper)	
	and microwave regions (lower) showing atmospheric windows.	7
2.4	Methodology for Land use / vegetation cover mapping.	12
2.5	Geoid-Ellipsoid -Projection Relationship.	14
Lis	st of Tables	
2.1	Electromagnetic spectral regions.	8
2.2	Characteristics of the satellite/sensor used in the present project work.	11
3.1	Vegetation cover / land use classes identified in Jharia Coalfield.	19
3.2	2 Distribution of Land use / Cover Patten in Jharia Coalfield in the year 2016	3 21
3.3	Wegetation Cover in Jharia Coalfield	22
3.4	Distribution of Mining area in Jharia Coalfield during the year 2016	24
3.5	Agricultural Land in Jharia Coalfield during the year 2016	25
3.6	Wastelands in Jharia coalfield during the year 2016	26
3.7	Distribution of Settlements in Jharia Coalfield during the year 2016	27
3.8	Cluster wise Land Use/Cover statistics	28
Lis	st of Plates	
Lis	st of maps/plates prepared on a scale of 1:50,000 are given below:	
1.	Plate No. HQ/REM/ 001: IRS-R2/ L4FMX FCC of Jharia Coalfield	
2.	Plate No. HQ/REM/ 002: Land use / Cover Map of Jharia Coalfield	
	based on IRS – R2/ L4FMX data of January 2016.	
3.	Land Use/Cover map of Cluster I	31
4.	Land Use/Cover map of Cluster II	32
5.	Land Use/Cover map of Cluster III	33
6.	Land Use/Cover map of Cluster IV	34
7.	Land Use/Cover map of Cluster V	35
8.	Land Use/Cover map of Cluster VI	36
9.	Land Use/Cover map of Cluster VII	37
10	. Land Use/Cover map of Cluster VIII	38
11	. Land Use/Cover map of Cluster IX	39

CMPDI

List of Plates	Page No.
12. Land Use/Cover map of Cluster X	40
13. Land Use/Cover map of Cluster XI	41
14. Land Use/Cover map of Cluster XII	42
15. Land Use/Cover map of Cluster XIII	43
16. Land Use/Cover map of Cluster XIV	44
17. Land Use/Cover map of Cluster XV	45

Chapter 1

Introduction

1.1 Project Reference

To monitor the regional impact of coal mining on land use pattern and vegetation cover in the 28 major coalfields at regular interval of three years based on remote sensing satellite data, Coal India Ltd. issued a work order to CMPDI vide letter no.CIL/WBP/ENV/2011/4706 dated 12.10.12. As the Impact of coal mining on land environment has to be assessed regularly at interval of three years, Geoenvironmental data base for Jharia coalfield based on satellite data was prepared earlier in the year 2010, 2012 under the above project. The present study is based on the satellite data of the year 2016. BCCL vide their letter No BCCL/ DGM(Env)/File-/16/276 dated 25.05.2016 requested that the map of each cluster under Jharia Coalfield shall also be incorporated in the report for EC compliance. Therefore cluster-wise land use/cover maps are also included in this report.

1.2 Objective

The objective of the present study is to prepare a regional land use and vegetation cover map of Jharia coalfield on 1:50,000 scale based on satellite data of the year 2016, using digital image processing technique for monitoring the impact of coal mining and other industrial activities on land use and vegetation cover in the coalfield area in period of last three years.

Job No 561410027 Page 1

1.4 Location of the Area & Accessibility

The Jharia Coalfield (JCF) is located in the north east part of the State of Jharkhand, approximately 260 km west of Kolkata. It is linked to Kolkata and Delhi through NH 2, which is the part of Golden Quadrilateral highway network of India. The coalfield contains proven coal reserves of approximately one billion tonnes in a crescent-shaped basin of approximately 400 km². BCCL operates within an area of approximately 258 Sq km. The Jharia coalfield covers an area of about 393 sq km. it is bounded by Lat 23°49'0.63"N and 23°38'36.50"N and Long 86°08'49.91"E and 86°25'54.92E. The major part of coalfield (about 400 sq km) lies in Dhanbad district of Jharkhand. Coalfield is connected by Major Highways road with Ranchi (117 km), Asansol (60 km), Jamshedpur (108 km) and Dhanbad (8 km). The nearest major railway station is Dhanbad, located on Delhi-Howrah Grand Chord line oh East Central Railway which passes parallel to northern boundary of the coalfield.

1.5 Physiography and Geology

Jharia coalfield is characterized by gently undulating to a rolling topography with an overall slope towards east-southeast. The coalfield is roughly sickle shaped on plan and occurs as a basin with its axis trending broadly east-west and plunging towards the west. The southern flank is truncated by a major Boundary Fault. The general dip of the formation is 10 to 15 degrees. Flatter dips have also been noted at places. The entire southern part of Jharia coalfield in the vicinity of the Boundary Fault, however shows generally steep dipping beds with amounts increasing even up to 70 degrees.

The drainage pattern in the Jharia coalfield is dendritic in nature. This may be due to more or less homogeneous lithology and structural controls. Damodar river is the main control of drainage system along the Jharia coalfield. It is a fourth order stream to which a number of third to first order streams, viz.

Job No 561410027 Page 2

Jamunia, Khudia, Katri, Ekra, Tisra, Chatkari etc. join. Damodar river flows along the southern periphery of the coalfield and is guided by the Main Boundary Fault. The main flow direction is from west to east.

The strike of the formation is generally WSW to ENE in the western part and WNW to ESE in the southern part of the coalfield. This gradually swings to EW in the centre of the coalfield and then to NS further east. In the south-eastern part the strike is generally WNW-ESE. Besides the boundary part the coalfield is traversed by a number of other major and minor faults.

The Barakar formation contains 18 standard coal horizons (numbered I to XVIII). Of the Barakar formations, the coal seams XIII and above are generally thin and of relatively superior quality. Seams XII to IX/X are of medium to superior quality and attain sizable thickness at places. The V, VI, VII, IV, III & II are generally thick seams of inferior quality. The bottom most seam I is of superior medium coking quality in the eastern part of the coalfield.

A map of India showing the location of Jharia Coalfield is given in Fig1.1.

.

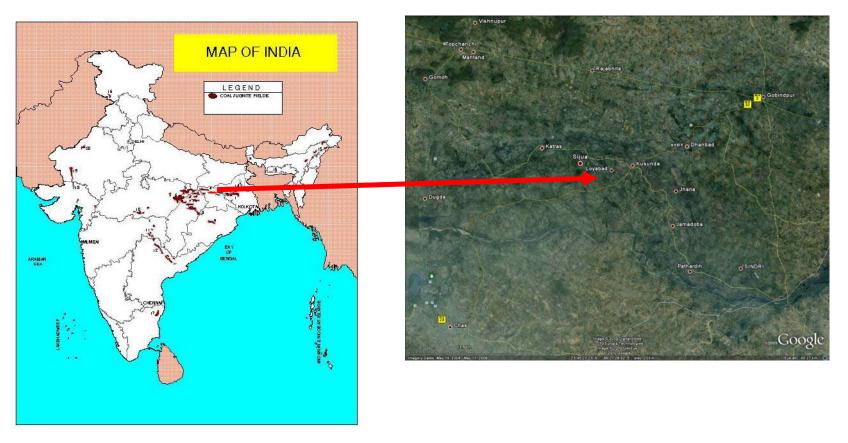
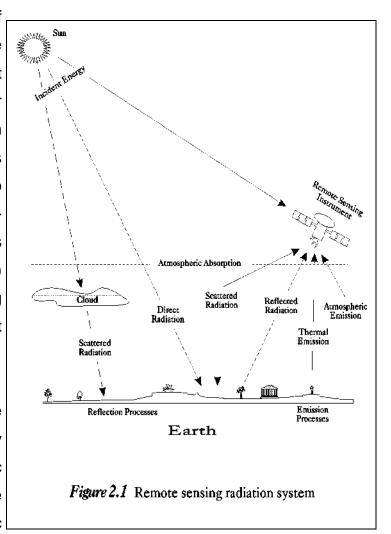


Fig 1.1: Map of India Showing the Location of Jharia Coalfields

Job No 561410027

Chapter 2


Remote Sensing Concepts and Methodology

2.1 Remote Sensing

Remote sensing is the science and art of obtaining information about an object or

area through the analysis of data acquired by a device that is not in physical contact with the object or area under investigation. The term remote sensing is commonly restricted to methods that employ electromagnetic energy (such as light, heat and radio waves) as the means of detecting and measuring object characteristics.

All physical objects on the earth surface continuously emit electromagnetic radiation because of the oscillations of their atomic

particles. Remote sensing is largely concerned with the measurement of electromagnetic energy from the *SUN*, which is reflected, scattered or emitted by the objects on the surface of the earth. Figure 2.1 schematically illustrate the generalised processes involved in electromagnetic remote sensing of the earth resources.

Job No 561410027

2.2 Electromagnetic Spectrum

The electromagnetic (EM) spectrum is the continuum of energy that ranges from meters to nanometres in wavelength and travels at the speed of light. Different objects on the earth surface reflect different amounts of energy in various wavelengths of the EM spectrum.

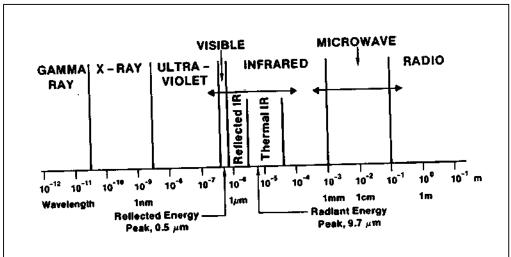


Figure 2.2 Electromagnetic spectrum. Expanded versions of the visible, infrared and microwave regions are shown in Figure 2.3.

Figure 2.2 shows the electromagnetic spectrum, which is divided on the basis of wavelength into different regions that are described in Table 2.1. The EM spectrum ranges from the very short wavelengths of the gamma-ray region to the long wavelengths of the radio region. The visible region (0.4-0.7µm wavelengths) occupies only a small portion of the entire EM spectrum.

Energy reflected from the objects on the surface of the earth is recorded as a function of wavelength. During daytime, the maximum amount of energy is reflected at 0.5µm wavelengths, which corresponds to the green band of the visible region, and is called the *reflected energy peak* (Figure 2.2). The earth also radiates energy both day and night, with the maximum energy 9.7µm wavelength. This *radiant energy peak* occurs in the thermal band of the IR region.

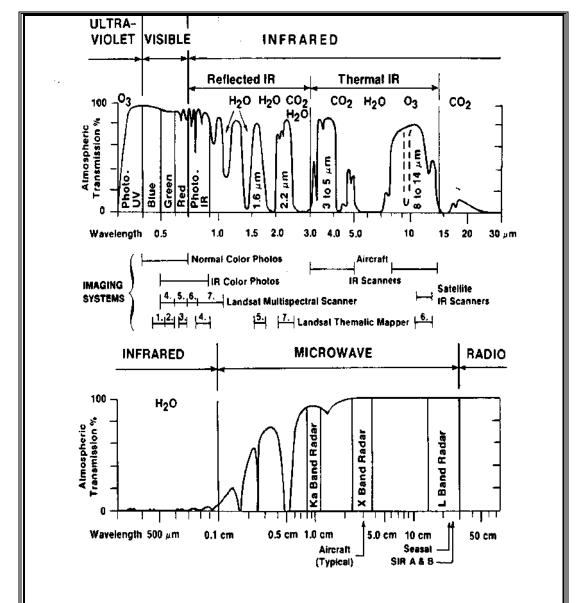


Figure 2.3 Expanded diagrams of the visible and infrared regions (upper) and the microwave regions (lower) showing atmospheric windows. Wavelength bands of commonly used remote sensing systems are indicated. Gases responsible for atmospheric absorption are shown.

	Table	2.1	Electroma	gnetic spectral regions
Region	1 0		Wavelength	
Gamma ray		<	0.03 nm	
X-ray	0.03	to	3.00 nm	Completely absorbed by atmosphere. Not employed in remote sensing.
Ultraviolet	0.03	to	0.40 µm	Incoming wavelengths less than 0.3mm are completely absorbed by Ozone in the upper atmosphere.
Photographic UV band	0.30	to	0.40 µm	Transmitted through atmosphere. Detectable with film and photo detectors, but atmospheric scattering is severe.
Visible	0.40	to	0.70 µm	Imaged with film and photo detectors. IBCCLudes reflected energy peak of earth at 0.5mm.
Infrared	0.70	to	100.00 μm	Interaction with matter varies with wavelength. Absorption bands separate atmospheric transmission windows.
Reflected IR band	0.70	to	3.00 µm	Reflected solar radiation that contains no information about thermal properties of materials. The band from 0.7-0.9mm is detectable with film and is called the <i>photographic IR band</i> .
Thermal IR band	3.00	to	5.00 µm	Principal atmospheric windows in the thermal
	8.00	to	14.00 µm	region. Images at these wavelengths are acquired by optical-mechanical scanners and special Videocon systems but not by film.
Microwave	0.10	to	30.00 cm	Longer wavelengths can penetrate clouds, fog and rain. Images may be acquired in the active or passive mode.
Radar	0.10	to	30.00 cm	•
Radio		>	30.00 cm	Longest wavelength portion of electromagnetic spectrum. Some classified radars with very long wavelength operate in this region.

The earth's atmosphere absorbs energy in the gamma-ray, X-ray and most of the ultraviolet (UV) region; therefore, these regions are not used for remote sensing. Details of these regions are shown in Figure 2.3. The horizontal axes show wavelength on a logarithmic scale; the vertical axes show percent atmospheric transmission of EM energy. Wavelength regions with high transmission are called *atmospheric windows* and are used to acquire remote sensing data. The major remote sensing sensors record energy only in the visible, infrared and micro-wave regions. Detection and measurement of the recorded energy enables identification of surface objects (by their characteristic wavelength patterns or spectral signatures), both from air-borne and space-borne platforms.

2.3 Scanning System

The sensing device in a remotely placed platform (aircraft/satellite) records EM radiation using a scanning system. In scanning system, a sensor, with a narrow field of view is employed; this sweeps across the terrain to produce an image. The sensor receives electromagnetic energy radiated or reflected from the terrain and converts them into signal that is recorded as numerical data. In a remote sensing satellite, multiple arrays of linear sensors are used, with each array recording simultaneously a separate band of EM energy. The array of sensors employs a spectrometer to disperse the incoming energy into a spectrum. Sensors (or *detectors*) are positioned to record specific wavelength bands of energy. The information received by the sensor is suitably manipulated and transported back to the ground receiving station. The data are reconstructed on ground into digital images. The digital image data on magnetic/optical media consist of picture elements arranged in regular rows and columns. The position of any picture element, pixel, is determined on a x-y co-ordinate system. Each pixel has a numeric value, called digital number (DN), which records the intensity of electromagnetic energy measured for the ground resolution cell represented by that pixel. The range of digital numbers in an image data is controlled by the radiometric resolution of the satellite's sensor system. The digital image data are further processed to produce master images of the study area. By analysing the digital data/imagery, digitally/visually, it is possible to detect, identify and classify various objects and phenomenon on the earth surface.

Remote sensing technique provides an efficient, speedy and cost-effective method for assessing the changes in vegetation cover certain period of time due to its inherited capabilities of being multi-spectral, repetitive and synoptic aerial coverage.

Job No 561410027

2.4 Data Source

The following data are used in the present study:

 Primary Data –Raw satellite data, obtained from National Remote Sensing Centre (NRSC), Hyderabad, as follows, was used as primary data source for the study.

IRS R2/ L4FMX; Band 2,3,4,5; Path # 106, Row # 055; Date of pass 5.01.2016*.

The detail specification of the data is also given in Table 2.2.

Secondary Data

Secondary (ancillary) and ground data constitute important baseline information in remote sensing, as they improve the interpretation accuracy and reliability of remotely sensed data by enabling verification of the interpreted details and by supplementing it with the information that cannot be obtained directly from the remotely sensed data.

2.5 Characteristics of Satellite/Sensor

The basic properties of a satellite's sensor system can be summarised as:

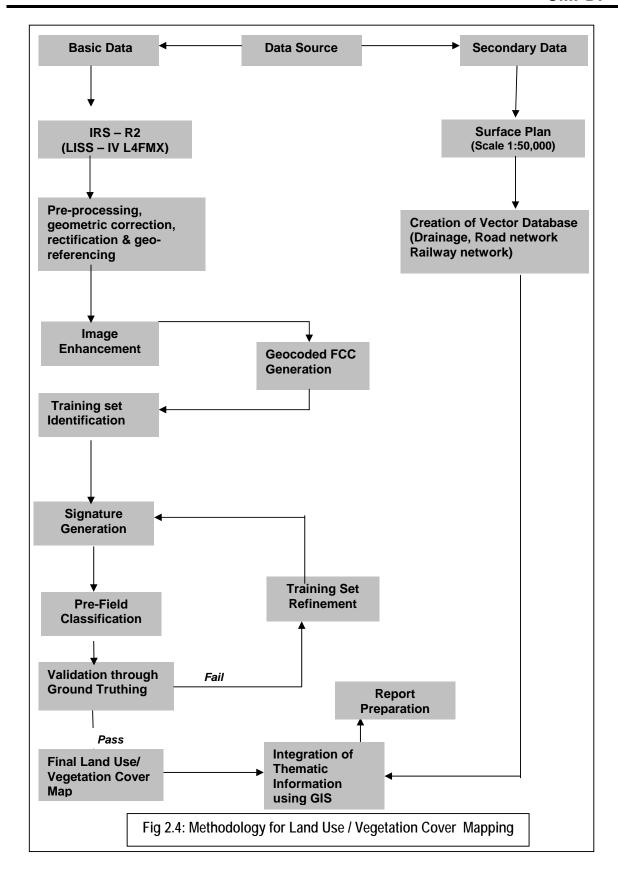
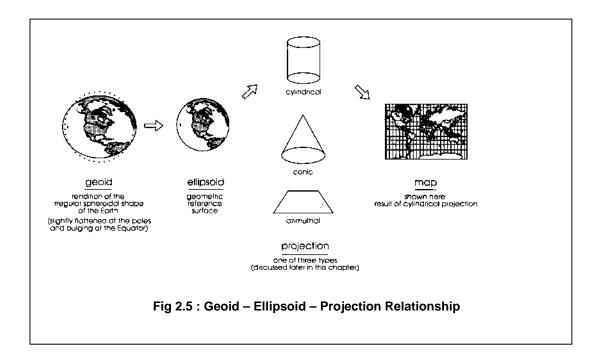

(a) Spectral coverage/resolution, i.e., band locations/width; (b) spectral dimensionality: number of bands; (c) radiometric resolution: quantisation;
 (d) spatial resolution/instantaneous field of view or IFOV; and (e) temporal resolution. Table 2.2 illustrates the basic properties of IRS-R2 satellite/sensor that is used in the present study.

Table	Table 2.2 Characteristics of the satellite/sensor used in the present project work														
Platform	Sensor	S	Spectra	al E	Bands	in µm	Radiometric Resolution	Spatial Resolution	Temporal Resolution	Country					
IRS- P-6	LISS-IV	В3	0.52 0.62 0.77 1.55		0.59 0.68 0.86 1.70	NIR	10 bits (7 bits transmitted with DPCM)	5.8m	24 days	India					
NIR· Ne	ar Infra-R	ed	MIR·	M	liddle	Infra-R	ed ed								

2.6 Data Processing

The methodology for data processing carried out in the present study is shown in Figure 2.4. The processing involves the following major steps:

- (a) Geometric correction, rectification and geo-referencing;
- (b) Image enhancement;
- (c) Training set selection;
- (d) Signature generation and classification;
- (e) Creation/overlay of vector database;
- (f) Validation of classified image;
- (g) Layer wise theme extraction using GIS
- (g) Final vegetation map preparation.


2.6.1 Geometric correction, rectification and georeferencing

Inaccuracies in digital imagery may occur due to 'systematic errors' attributed to earth curvature and rotation as well as 'non-systematic errors' attributed to intermittent sensor malfunctions, etc. Systematic errors are corrected at the satellite receiving station itself while non-systematic errors/ random errors are corrected in pre-processing stage.

In spite of 'System / Bulk correction' carried out at supplier end; some residual errors in respect of attitude attributes still remains even after correction. Therefore, fine tuning is required for correcting the image geometrically using ground control points (GCP).

Raw digital images contain geometric distortions, which make them unusable as maps. A map is defined as a flat representation of part of the earth's spheroidal surface that should conform to an internationally accepted type of cartographic projection, so that any measurements made on the map will be accurate with those made on the ground. Any map has two basic characteristics: (a) scale and (b) projection. While *scale* is the ratio between reduced depiction of geographical features on a map and the geographical features in the real world, *projection* is the method of transforming map information from a sphere (round Earth) to a flat (map) sheet. Therefore, it is essential to transform the digital image data from a generic co-ordinate system (i.e. from line and pixel co-ordinates) to a projected co-ordinate system. In the present study geo-referencing was done with the help of Survey of India (SoI) topo-sheets so that information from various sources can be compared and integrated on a GIS platform, if required.

An understanding of the basics of projection system is required before selecting any transformation model. While maps are flat surfaces, Earth however is an irregular sphere, slightly flattened at the poles and bulging at the Equator. Map projections are systemic methods for "flattening the orange peel" in measurable ways. When transferring the Earth and its irregularities onto the plane surface of a map, the following three factors are involved: (a) geoid (b) ellipsoid and (c) projection. Figure 2.5 illustrates the relationship between these three factors. The geoid is the rendition of the irregular spheroidal shape of the Earth; here the variations in gravity are taken into account. The observation made on the geoid is then transferred to a regular geometric reference surface, the ellipsoid. Finally, the geographical relationships of the ellipsoid (in 3-D form) are transformed into the 2-D plane of a map by a transformation process called map projection. As shown in Figure 2.5, the vast majority of projections are based upon cones, cylinders and planes.

In the present study, *UTM projection* along with *WGS 84 model* was used so as to prepare the map compatible with the Sol topo-sheets. UTM projection is used in Sol topo-sheets as it is best suited for small-scale mapping and larger area as well as for areas with North-South orientation (viz. India). Maps prepared using this projection is a compromise of many properties; it is neither conformal perspective nor equal area. Distances, areas and shapes are true only along central meridian. Distortion increases away from central meridian. Image transformation from generic co-ordinate system to a projected co-ordinate system was carried out using ERDAS Imagine 2014 digital image processing system.

2.6.2 Image enhancement

To improve the interpretability of the raw data, image enhancement is necessary. Most of the digital image enhancement techniques are categorised as either point or local operations. Point operations modify the value of each pixel in the image data independently. However, local operations modify the value of each pixel based on brightness value of neighbouring pixels. Contrast manipulations/stretching technique based on local operation were applied on the image data using ERDAS Imagine 2014 s/w. The enhanced and geocoded FCC (False colour composite) image of Jharia Coalfield is shown in Plate No. 1 for the year 2013.

2.6.3 Training set selection

The image data were analysed based on the interpretation keys. These keys are evolved from certain fundamental image-elements such as tone/colour, size, shape, texture, pattern, location, association and shadow. Based on the image-elements and other geo-technical elements like land form, drainage pattern and physiography; training sets were selected/ identified for each land use/cover class. Field survey was carried out by taking selective traverses in order to collect the ground information (or reference data) so that training sets are

Job No 561410027

selected accurately in the image. This was intended to serve as an aid for classification. Based on the variability of land use/cover condition and terrain characteristics and accessibility, 90 points were selected to generate the training sets.

2.6.4 Signature generation and classification

Image classification was carried out using the minimum distance algorithm. The classification proceeds through the following steps: (a) calculation of statistics [i.e. signature generation] for the identified training areas, and (b) the decision boundary of maximum probability based on the mean vector, variance, covariance and correlation matrix of the pixels.

After evaluating the statistical parameters of the training sets, reliability test of training sets was conducted by measuring the statistical separation between the classes that resulted from computing divergence matrix. The overall accuracy of the classification was finally assessed with reference to ground truth data. The aerial extent of each land use class in the coalfield was determined using ERDAS Imagine 2014 s/w. The classified image for the year 2016 for Jharia Coalfield is shown in Drawing No. HQREMA10002.

2.6.5 Creation /overlay of vector database in GIS

Plan showing leasehold areas of mining projects supplied by BCCL are superimposed on the image as vector layer in the GIS database. Road network, rail network and drainage network are digitised on different vector layers in GIS database. Layer wise theme extraction was carried out using Arc GIS s/w and imported the same on GIS platform for further analysis.

2.6.6 Validation of classified image

Ground truth survey was carried out for validation of the interpreted results from the study area. Based on the validation, classification accuracy matrix was prepared.

The overall classification accuracy was found to be 88.59%.

2.6.7 Interpretation of Data

Interpretation of data for Land Use/vegetation cover was carried out through GIS by analysing the Land Use/ vegetation Cover map of the year 2016. Final Land Use/vegetation cover maps (on 1:50,000 scale) were printed using HP Design jet 4500 Colour Plotter.

Chapter 3

Land Use/ Vegetation Cover Monitoring

3.1 Introduction

Land is one of the most important natural resource on which all human activities are based. Therefore, knowledge on different type of lands as well as its spatial distribution in the form of map and statistical data is vital for its geospatial planning and management for optimal use of the land resources. In mining industry, the need for information on land use/ vegetation cover pattern has gained importance due to the all-round concern on environmental impact of mining. The information on land use/vegetation cover inventory that includes type, spatial distribution, aerial extent, location, rate and pattern of change of each category is of paramount importance for assessing the impact of coal mining on land use/ cover.

Remote sensing data with its various spectral and spatial resolution offers comprehensive and accurate information for mapping and monitoring of land use/cover pattern, dynamics of changing pattern and trends over a period of time.. By analysing the data of different cut-off dates, impact of coal mining on land use and vegetation cover can be determined.

3.2 Land Use / Vegetation Cover Classification

The array of information available on land use/cover requires be arranging or grouping under a suitable framework in order to facilitate the creation of database. Further, to accommodate the changing land use/vegetation cover pattern, it becomes essential to develop a standardised classification system that is not only

flexible in nomenclature and definition, but also capable of incorporating information obtained from the satellite data and other different sources.

The present framework of land use/cover classification has been primarily based on the 'Manual of Nationwide Land Use/ Land Cover Mapping Using Satellite Imagery' developed by National Remote Sensing Agency, Hyderabad, which has further been modified by CMPDI for coal mining areas. Land use/vegetation cover map was prepared on the basis of image interpretation carried out based on the satellite data for the year 2016. Following land use/cover classes are identified in the Jharia coalfield region (Table 3.1).

Lar	· ·	ble 3.1 lasses identified in Jharia Coalfield
	LEVEL -I	LEVEL-II
1	Vegetation Cover	3.1 Dense Forest 3.2 Open Forest 3.3 Scrub 3.4 Plantation under Social Forestry 3.5 Plantation on OB Dumps
2	Mining Area	5.1 Coal Quarry 5.2 Barren OB Dump 5.3 Area Under Backfilling 5.4 Coal Dump 5.5 Water Filled Quarry
3	Agricultural Land	2.1 Crop Land 2.2 Fallow Land
4	Wasteland	4.1 Waste upland with/without scrubs4.2 Slurry Pond4.3 Sand Body
5	Settlements	1.1 Urban 1.2 Rural 1.3 Industrial
6	Water Bodies	6.1 River/Streams /Reservoir

3.3 Data Analysis of Jharia Coalfiled

Satellite data of the year 2016 was processed using ERDAS Imagine v.2014 image processing s/w in order to interpret the various land use and vegetation cover classes present in the Jharia coalfield. The analysis was carried out for entire coalfield covering about 393 sq. km.

The area of each class was calculated and analysed using *ERDAS Digital Image Processing* s/w and *ArcGIS* s/w. Analysis of land use / vegetation cover pattern in Jharia Coalfield in the year 2016 has been done and details are and shown in table 3.2.

TABLE - 3.2: STATUS OF LAND USE/COVER PATTERN IN JHARIA COALFIELD DURING YEAR 2013 & 2016

LAND USE CLASSES	Year 20	013	Year 2	2016	Chai	nge	Reasons for change
SETTLEMENTS	Area (Km²)	%	Area (Km²)	%	Area (Km²)	%	
Urban Settlement	35.05	8.92	35.05	8.92	0.00	0.00	No change
Rural Settlement	3.17	0.81	3.74	0.95	0.57	0.15	Migration of population to mining areas
Industrial Settlement	3.35	0.85	2.29	0.58	-1.06	-0.27	Dismantling of some industrial structures, eg Lodna Washery
Total Settlements	41.57	10.58	41.08	10.46	-0.49	-0.12	
VEGETATION COVER							
FORESTS							
Dense Forest	0.29	0.07	0.29	0.07	0.00	0.00	No Change
Open Forest	8.51	2.16	6.27	1.60	-2.24	-0.56	Minor decrease due to deforestation
Total Forest (A)	8.8	2.23	6.56	1.67	-2.24	-0.56	
SCRUBS							
Scrubs (B)	122.5	31.2	105.87	26.95	-16.63	-4.25	Coversion of UG mines into OC mines, Land with scrubs were used
PLANTATION							
Social forestry	19.41	4.94	19.52	4.97	0.11	0.03	Increase in plantation along roads, creation of ecological resoration parks
Plantation on OB Dump	11.94	3.04	8.59	2.19	-3.35	-0.85	Decrese due to increase in mining activity & conversion of UG mines into OC mines
Total Plantation (C)	31.35	7.98	28.11	7.16	-3.24	-0.82	
Total Vegetation (A+B+C)	162.65	41.4	140.54	35.77	-22.11	-5.63	
MINING AREA							
Coal Quarry	6.98	1.78	11.36	2.89	4.38	1.11	Increase in mining activity Places where coal dumps
Coal Dump	1.3	0.33	0.23	0.06	-1.07	-0.27	were obeserved have been shifted
Quarry filled with water	0.25	0.06	0.77	0.20	0.52	0.13	Minor change in places with water filled quarries
Barren OB Dump	19.06	4.85	12.55	3.19	-6.51	-1.66	Some area under small OB dumps coming under new amalgamated projects
Area Under Backfilling	7.36	1.87	15.62	3.98	8.26	2.10	Due to increase in excavation due to opencast mining activities
Toal Mining Area	35.22	8.97	40.53	10.32	5.31	1.35	
AGRICULTURE							Derease due to crop land
Crop Lands	3.94	1	3.71	0.94	-0.23	-0.06	being converted into fallow land Conversion of scrub land
Fallow Lands	35.85	9.13	40.68	10.36	4.83	1.23	into fallow land
Total Agriculture	39.79	10.13	44.39	11.30	4.60	1.17	
WASTELANDS							Scrubland converted to
Wastelands	100.05	25.47	113.97	29.01	13.92	3.54	wasteland converted to
Ash pond/Slurry/ Tailing Ponds	0.26	0.07	0	0.00	-0.26	-0.07	
Sand Body	1.53	0.39	4.85	1.23	3.32	0.85	Temporal change over period
Total Wastelands	101.84	25.92	118.82	30.25	16.98	4.32	
WATERBODIES	11.78	3	7.48	1.90	-4.30	-1.09	Temporal change over
River, Lakes, Nallas, ponds, etc							period
TOTAL	392.85	100	392.85	100.00	0.00	0.00	

3.3.1 Vegetation Cover

Vegetation cover in the coalfield area comprises following five classes:

- Dense Forest
- Open Forest
- Scrubs
- Plantation on Over Burden(OB) Dumps / Backfilled area, and
- Social Forestry

There has been significant variation in the land use under the vegetation classes within the area as shown below in Table 3.3.

TABLE – 3.3

Status of change in Vegetation Cover in Jharia Coalfield during the year 2013 & 2016

VEGETATION COVER	Year 20	013	Year 20)16	Change	е		
FORESTS	Area (sq Km)	%	Area (sq Km)	%	Area (sq Km)	%		
Dense Forest	0.29	0.07	0.29	0.07	0.00	0.00		
Open Forest	8.51	2.16	6.27	1.60	-2.24	-0.56		
Total Forest (A)	8.80	2.23	6.56	1.67	-2.24	-0.56		
SCRUBS								
Scrubs (B)	122.50	31.20	105.87	26.95	-16.63	-4.25		
PLANTATION								
Social forestry	19.41	4.94	19.52	4.97	0.11	0.03		
Plantation on OB Dump	11.94	3.04	8.59	2.19	-3.35	-0.85		
Total Plantation (C)	31.35	7.98	28.11	7.16	-3.24	-0.82		
Total Vegetation (A+B+C)	162.65	41.40	140.54	35.78	-22.11	-5.63		

Dense forest – Forest having crown density of above 40% comes in this class. Dense forest over the area is same as in year 2013.. A total dense forest is estimated to be 0.29

sq km, i.e. 0.07% of the coalfield area. The area of the dense forest within the coalfield has remained same since 2013.

Open Forest – Forest having crown density between 10% to 40% comes under this class. Open forest cover over Jharia coalfield which was estimated to be 8.51 sq km (2,16%) in 2013 has marginally decreased to 6.27 sq km, i.e. 1.60 % of the coalfield area. Thus the area reduced is 2.24 sq km which is 0.56 % of the total coalfield area. This reduction is due to deforestation by local inhabitants.

Scrubs – Scrubs are vegetation with crown density less than 10%. Scrubs in the coalfield are seen to be scattered signature all over the area mixed with wastelands. There is 105.87 sq km, of scrubs, ie 26.95% of the coalfield area. In year 2013 the scrubs covered 122.50 sq km which were 31.20% of the coalfield area. There is a decrease of 16.63 sq km which is 4.25% of the coalfield area. The decrease is due to increase in mining areas and conversion of underground mine into open cast ones & also increase in agricultural land & waste land.

Social Forestry – Plantation which has been carried out on wastelands, along the roadsides and colonies on green belt come under this category. Analysis of data reveals Social Forestry covers 19.52 sq km, which is 4.97% of the coalfield area. In 2013 the area covered under social forestry was 19.41 sq km (4.94%) . there is an increase of 0.11 sq km (0.03%). This increase is due to creation of some ecological restoration sites.

Plantation over OB Dump and backfilled area – Analysis of the data reveals that BCCL has carried out significant plantation on OB dumps as well as backfilled areas during the period for maintaining the ecological balance of the area. The plantation on the OB dumps and backfilled areas are estimated to be 8.59 sq km, i.e. 2.19% of the coalfield area. In year 2013 the plantation on OB Dumps were estimated to cover an area of 11.94 sq km which was 3.04% of the coalfield area. There is a decrease of 3.35 sq km (0.85%) in plantation over OB dumps. This is due to increase in mining activity & conversion of UG mines into OC mines.

3.3.2 Mining Area

The mining area was primarily been categorized as.

- Coal Quarry
- Barren OB Dump

To make the study more relevant and to give thrust on land reclamation, in the current study some more classes have been added as follows:

- Barren Backfilled Area
- Coal Dumps
- Water filled Quarry

The overall area where mining operations are being carried out has increased significantly by 5.31 sq km which is 1.35% of the total area. In the year 2013 this area was estimated to be 35.22 sq km (8.97%) which has increased to 40.53 sq km (10.32%) in the year 2016. This increase is due to increase in production of coal from Open cast areas. The status of land Use in the mining area over the Jharia Coalfield is shown in the table 3.4 below.

TABLE – 3.4

Status of change in Mining Area in Jharia Coalfield during the year 2013 & 2016

	201	13	20	16	Change				
MINING AREA	Area (Sq km)	%	Area (Sq km)	%	Area (Sq km)	%			
Coal Quarry	6.98	1.78	11.36	2.89	4.38	1.11			
Coal Dump	1.30	0.33	0.23	0.06	-1.07	-0.27			
Quarry filled with water	0.25	0.06	0.77	0.20	0.52	0.14			
Barren OB Dump	19.06	4.85	12.55	3.20	-6.51	-1.65			
Area Under Backfilling	7.36	1.87	15.62	3.97	8.26	2.10			
Total Mining Area	35.22	8.97	40.53	10.32	5.31	1.35			

3.3.3 Agricultural Land

Land primarily used for farming and production of food, fibre and other commercial and horticultural crops falls under this category. It includes crop land (irrigated and unirrigated) and fallow land (land used for cultivation, but temporarily allowed to rest)

Total agricultural land is 44.39 sq km in year 2016, which is 11.31 % of the coalfield area. in year 2013 the total agricultural area was estimated to be 39.79 sq km which was 10.12% of the coalfield area. There is an increase on 4.60 sq km which is 1.19% of the coalfield area. The details are shown below in Table 3.5.

TABLE – 3.5

Status of change in Agricultural land in Jharia Coalfield during the year 2013 & 2016

	2013		2016		Change					
AGRICULTURE	Area (Sq km)	%	Area (Sq km)	%	Area (Sq km)	%				
Crop Lands	3.94	1.00	3.71	0.95	-0.23	-0.05				
Fallow Lands	35.85	9.12	40.68	10.36	4.83	1.24				
Total Agriculture	39.79	10.12	44.39	11.31	4.60	1.19				

3.3.4 Wasteland

Wasteland is degraded and unutilised class of land which is deteriorating on account of natural causes or due to lack of appropriate water and soil management. Wasteland can result from inherent/imposed constraints such as location, environment, chemical and physical properties of the soil or financial or management constraints. There are two types of wastelands predominant within the coalfield area, viz waste upland and fly ash pond.

The land use pattern within the area for waste lands is shown below in Table -3.6. The waste land was estimated to be 101.84 sq km (25.93%) in the year 2013. This has increased by 16.98 sq km (4.32%) to 118.82 sq km (30.24%) over the 3 year period because some scrubland has been converted to wasteland.

TABLE – 3.6

Status of Change in Wastelands in Jharia Coalfield during the year 2013 & 2016

	20:	13	20	16	Change				
WASTELANDS	Area (Sq km)	%	Area (Sq km)	%	Area (Sq km)	%			
Wastelands	100.05	25.47	113.97	29.01	13.92	3.54			
Ash pond/Slurry/ Tailing Ponds	0.26	0.07	0.00	0.00	-0.26	-0.07			
Sand Body	1.53	0.39	4.85	1.23	3.32	0.85			
Total Wastelands	101.84	25.93	118.82	30.24	16.98	4.32			

3.3.5 Settlements

All the man-made constructions covering the land surface are included under this category. Built-up land has been further divided in to rural, urban and industrial classes. In the present study, industrial settlement indicates only industrial complexes excluding residential facilities. In the year 2013 the total area covered by settlements were estimated to be 41.57 sq km (10.58%). In year 2016 the estimated area under settlements has grown to 41.08 sq km (10.45%). There is a decrease in settlements by 0.49 sq km which is about 0.12% of the total area. This decrease is due to decrease in industrial settlement which may be due to dismantling of some establishments.

The details of the land use under this category are shown in Table 3.7 as follows:

TABLE 3.7

Status of Change in Settlements in Jharia Coalfield during the year 2013 & 2016

	2013	3	201	L6	Change				
SETTLEMENTS	Area (Sq km)	%	Area (Sq km)	%	Area (Sq km)	%			
Urban Settlement	35.05	8.92	35.05	8.92	0.00	0.00			
Rural Settlement	3.17	0.81	3.74	0.95	0.57	0.15			
Industrial Settlement	3.35	0.85	2.29	0.58	-1.06	-0.27			
Total Settlements	41.57	10.58	41.08	10.45	-0.49	-0.12			

3.3.6 Water bodies

It is the area of impounded water includes natural lakes, rivers/streams and man made canal, reservoirs, tanks etc. The water bodies in the study area have found to be 11.78 sq km in year 2013, which is 3.00% of the coalfield area. In 2016 there is a reduction in the area of water bodies 4.30 sq km (1.10%) of the total area.

3.4 Data Analysis of clusters under Jharia Coalfield

Land use and vegetation cover classes present in each cluster (Cluster I to Cluster XV) falling under the Jharia coalfield has also been prepared. The map of each cluster is included in this report under pages 31 to 45. Each map contains the area statistics of Land use/cover classes present in them. The cluster wise Land Use/Cover statistics for cluster I to cluster XV falling under Jharia Coalfield is given under Table 3.8.

Table-3.8

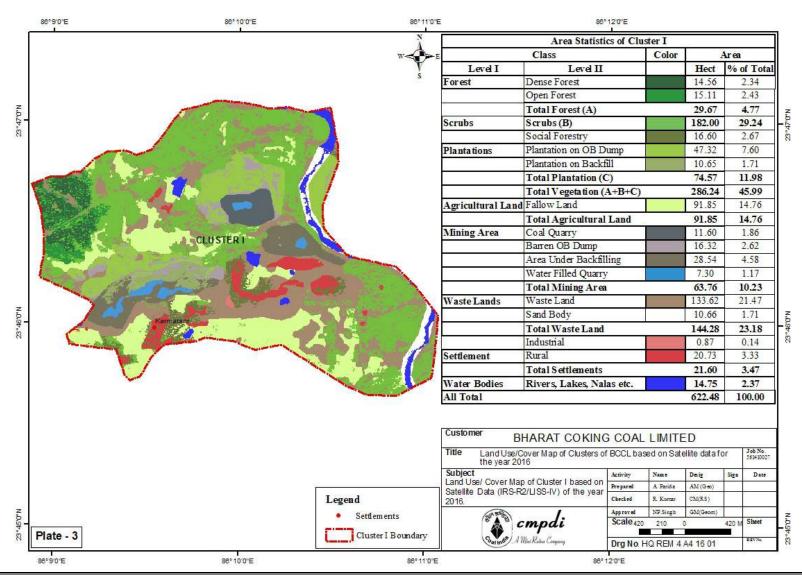
Mary		CIII	STER I	CLUS	TER II	CLUS	TER III	CLUST	FR IV	CLUS	TER V	CLUS	TER VI	CLUST	FR VII	CLUST	FR VIII	CLUS	TER IX	CLUS	TER X	CLUST	TER XI	CLUST	TER XII	CLUST	EB XIII	CLUST	ER XIV	CLUS	TER XV	TOT	a in Hectare)
Part Primer Prim										OLGO		OLGO	LIX VI	OLUU.		OLUU.	-10 4111	OLUU	LIVIA	OLOG	I A	OLUU.	LICAL	OLUG	LIX AII	OLUG!	LIC AIII	OLUU1	LICAIV				
Total Portion	Dense Forest	14.56	2.34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	14.56	0.06
Schaffennn	Open Forest	15.11	2.43	0.00	0.00	32.73	2.11	0.00	0.00	0.00	0.00	0.00	0.00	0.38	0.02	0.00	0.00	0.00	0.00	65.50	3.16	0.00	0.00	0.00	0.00	172.73	9.23	0.00	0.00	63.05	3.46	349.50	1.38
Seal Foreigney	Total Forest	29.67	4.77	0.00	0.00	32.73	2.11	0.00	0.00	0.00	0.00	0.00	0.00	0.38	0.02	0.00	0.00	0.00	0.00	65.50	3.16	0.00	0.00	0.00	0.00	172.73	9.23	0.00	0.00	63.05	3.46	364.06	1.44
Persistent on Bilburgs	Scrubs	182.00	29.24	233.14	10.31	274.77	17.70	87.26	7.04	237.06	13.74	63.71	7.66	301.39	14.59	117.43	8.82	275.34	14.00	482.12	23.25	1470.72	40.79	256.27	29.60	583.41	31.19	494.37	34.86	610.87	33.58	5669.86	22.45
Pursing one plane liming of the plane liming o	Social Forestry	16.60	2.67	150.07	6.64	110.03	7.09	82.10	6.62	60.01	3.48	33.83	4.07	99.35	4.81	12.99	0.97	163.31	8.30	136.29	6.57	269.08	7.46	24.30	2.81	125.11	6.69	54.94	3.87	138.17	7.59	1476.18	5.85
Total Plantation (Revisional Revisional Revi	Plantation on OB Dump	47.32	7.60	105.98	4.69	23.17	1.49	38.25	3.08	20.80	1.21	21.03	2.53	20.08	0.97	23.80	1.79	30.68	1.56	92.78	4.47	0.12	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	424.01	1.68
The Mile Properties of	Plantation on Backfill	10.65	1.71	81.89	3.62	12.96	0.83	0.01	0.00	30.64	1.78	31.36	3.77	60.62	2.93	33.98	2.55	57.92	2.94	44.31	2.14	1.18	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	365.52	1.45
Coal Cuarry 1160 186 1845 680 8236 830 17828 1437 1786 828 578 830 830 830 830 1327 1326 830 830 1327 1326 830																																	
Coal Dump 00 00 00 00 00 00 00	Total vegetation	200.24	+ 45.99	3/1.00	25.20	433.00	29.22	207.02	10.74	340.31	20.21	149.93	10.03	401.02	23.32	100.20	14.13	321.23	20.00	021.00	39.39	1741.10	40.29	200.57	32.41	001.23	47.11	349.31	30.73	012.09	44.03	0299.03	32.01
Coal Dump Doi: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Coal Quarry	11.60	1.86	148.85	6.58	82.36	5.30	178.26	14.37	117.63	6.82	57.63	6.93	86.60	4.19	180.71	13.57	112.86	5.74	31.34	1.51	34.83	0.97	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1042.67	4.13
Advance Clearly Side	Coal Face	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
County-Filed With Water 1.73	Coal Dump	0.00	0.00	9.32	0.41	1.94	0.13	0.62	0.05	1.03	0.06	0.65	0.08	2.99	0.14	3.13	0.23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	19.68	0.08
Total Area under Active Mining 18.50 1.50 178.62 7.50 77.56 1.50 178.62 1.70 1.7	Advance Quarry Site	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Service OB Dump 16.32 262 194.48 8.60 93.67 6.03 61.14 14.61 15.031 8.72 64.88 7.80 81.38 34.9 11.22 31.28 15.15 15.24 12.18 15.05 5.41 17.27 5.16 66.68 5.38 181.9 15.5 93.13 11.23 17.28 17.27 17.25 17.26 17.25 17.	Quarry Filled With Water	7.30	1.17	20.45	0.91	13.26	0.85	0.00	0.00	8.62	0.50	1.18	0.14	4.13	0.20	0.70	0.05	4.82	0.25	3.68	0.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	64.14	0.25
Area Under Backfilling 28.54 4.58 93.74 17.42 77.77 5.01 66.69 5.38 181.89 10.55 98.13 11.92 91.59 11	Total Area under Active Mining	18.90	3.03	178.62	7.90	97.56	6.28	178.88	14.42	127.28	7.38	59.46	7.15	93.72	4.53	184.54	13.85	117.68	5.99	35.02	1.69	34.83	0.97	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1126.49	4.46
Total Area under Technical Reclamation	Barren OB Dump	16.32	2.62	194.48	8.60	93.67	6.03	181.14	14.61	150.31	8.72	64.88	7.80	81.38	3.94	112.23	8.42	135.88	6.91	94.20	4.54	18.22	0.51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1142.71	4.53
Field Area under Mine Operation 63.76 10.23 766.84 33.92 269.00 17.32 426.71 34.41 49.94 26.65 223.47 26.87 487.99 23.67 487.99 43.67 487.99 23.67 487.99 23.67 487.99 23.67 487.99 23.67 487.99 23.67 487.99 23.67 487.99 23.67 487.99 23.67 487.99 23.67	Area Under Backfilling	28.54																					0.50										
Waste Lands 133.62 21.47 624.95 27.65 503.66 32.44 350.38 28.25 585.22 33.93 318.55 38.29 528.08 25.56 415.58 31.20 683.07 34.72 404.11 19.48 917.12 25.44 27.50 31.76 705.27 37.71 504.15 35.55 640.16 35.19 7785.71 07.4 10.66 1.71 4.00 0.18 0.00 0																																	
Sand Body 10.66 1.71 4.00 0.18 0.00 0.	Total Area under Mine Operation	63.76	10.23	766.84	33.92	269.00	17.32	426.71	34.41	459.48	26.65	223.47	26.87	487.99	23.62	459.01	34.45	360.07	18.31	236.71	11.41	71.25	1.98	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3824.29	15.15
Total Wasteland 144.28 23.18 628.95 27.83 503.68 32.44 350.38 28.25 585.22 33.93 318.55 38.29 528.08 25.56 415.58 31.20 683.07 34.72 504.66 24.33 924.15 25.63 275.00 31.76 727.45 38.89 546.50 38.54 640.16 35.19 7775.71 30.79 Reservoir, nallah, ponds 14.75 2.37 20.39 0.90 14.71 0.95 8.82 0.71 5.45 0.32 8.97 1.08 13.55 0.66 8.11 0.61 16.01 0.81 126.31 6.09 33.20 0.92 19.37 2.24 25.94 1.39 18.24 1.29 19.94 1.09 353.76 1.40 Crop Lands 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Q																																
Reservoir, nallah, ponds 14.75 2.37 20.39 0.90 14.71 0.95 8.82 0.71 5.45 0.32 8.97 1.08 13.55 0.66 8.11 0.61 16.01 0.81 126.31 6.09 33.20 0.92 19.37 2.24 25.94 1.39 18.24 1.29 19.94 1.09 353.76 1.40 Total Waterbodies 14.75 2.37 20.39 0.90 14.71 0.95 8.82 0.71 5.45 0.32 8.97 1.08 13.55 0.66 8.11 0.61 16.01 0.81 126.31 6.09 33.20 0.92 19.37 2.24 25.94 1.39 18.24 1.29 19.94 1.09 353.76 1.40 Crop Lands 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Sand Body	10.66	1.71	4.00	0.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.55	4.85	7.03	0.19	0.00	0.00	22.18	1.18	42.35	2.99	0.00	0.00	186.77	0.74
Total Waterbodies 14.75 2.37 20.39 0.90 14.71 0.95 8.82 0.71 5.45 0.32 8.97 1.08 13.55 0.66 8.11 0.61 16.01 0.81 126.31 6.09 33.20 0.92 19.37 2.24 25.94 1.39 18.24 1.29 19.94 1.09 353.76 1.40 Crop Lands 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Total Wasteland	144.28	3 23.18	628.95	27.83	503.68	32.44	350.38	28.25	585.22	33.93	318.55	38.29	528.08	25.56	415.58	31.20	683.07	34.72	504.66	24.33	924.15	25.63	275.00	31.76	727.45	38.89	546.50	38.54	640.16	35.19	7775.71	30.79
Crop Lands	Reservoir, nallah, ponds	14.75	2.37	20.39	0.90	14.71	0.95	8.82	0.71	5.45	0.32	8.97	1.08	13.55	0.66	8.11	0.61	16.01	0.81	126.31	6.09	33.20	0.92	19.37	2.24	25.94	1.39	18.24	1.29	19.94	1.09	353.76	1.40
Fallow Lands 91.85 14.76 77.09 3.41 58.05 3.74 53.69 4.33 40.02 2.32 1.02 0.12 20.38 0.99 65.11 4.89 42.59 2.16 62.64 3.02 323.90 8.98 254.61 29.40 93.18 4.98 224.53 15.83 211.56 11.63 1620.22 6.42 Total Agriculture 91.85 14.76 77.09 3.41 58.05 3.74 53.69 4.33 46.90 2.72 1.02 0.12 59.54 2.88 81.23 6.10 42.90 2.18 81.75 3.94 418.00 11.59 257.51 29.73 153.63 8.21 231.41 16.31 218.07 11.99 1872.64 7.42 Urban Settlement 0.00 0.00 163.66 7.24 243.23 15.67 192.99 15.56 269.93 15.65 113.08 13.59 475.46 23.02 169.76 12.75 332.56 16.91 243.91 11.76 375.11 10.40 23.83 2.75 26.10 1.40 0.00 0.00 83.80 4.61 2713.42 10.75 Rural Settlement 0.87 0.14 7.69 0.34 1.87 0.12 0.00 0.00 9.03 0.52 16.81 2.02 17.90 0.87 10.06 0.76 5.36 0.27 18.27 0.88 30.76 0.85 0.00 0.00 1.82 0.10 0.42 0.03 2.86 0.16 123.72 0.49 Total Settlement 21.60 3.47 196.19 8.68 253.43 16.33 192.99 15.56 278.96 16.17 128.89 15.61 494.71 23.96 178.82 13.51 33.792 17.18 303.65 14.64 417.99 11.59 33.47 3.86 82.20 4.40 72.79 5.13 129.04 7.10 3124.64 12.37	Total Waterbodies	14.75	2.37	20.39	0.90	14.71	0.95	8.82	0.71	5.45	0.32	8.97	1.08	13.55	0.66	8.11	0.61	16.01	0.81	126.31	6.09	33.20	0.92	19.37	2.24	25.94	1.39	18.24	1.29	19.94	1.09	353.76	1.40
Total Agriculture 91.85 14.76 77.09 3.41 58.05 3.74 53.69 4.33 46.90 2.72 1.02 0.12 59.54 2.88 81.23 6.10 42.90 2.18 81.75 3.94 418.00 11.59 257.51 29.73 153.63 8.21 231.41 16.31 218.07 11.99 1872.64 7.42 Urban Settlement 20.73 3.33 24.84 1.10 8.33 0.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00	≝ Crop Lands	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.88	0.40	0.00	0.00	39.16	1.89	16.12	1.21	0.31	0.02	19.11	0.92	94.10	2.61	2.90	0.33	60.45	3.23	6.88	0.48	6.51	0.36	252.42	1.00
Urban Settlement 0.00 0.00 163.66 7.24 243.23 15.67 192.99 15.56 269.93 15.65 113.08 13.59 475.46 23.02 169.76 12.75 332.56 16.91 243.91 11.76 375.11 10.40 23.83 2.75 26.10 1.40 0.00 0.00 83.80 4.61 2713.42 10.75 Rural Settlement 0.87 0.14 7.69 0.34 1.87 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Fallow Lands	91.85	14.76	77.09	3.41	58.05	3.74	53.69	4.33	40.02	2.32	1.02	0.12	20.38	0.99	65.11	4.89	42.59	2.16	62.64	3.02	323.90	8.98	254.61	29.40	93.18	4.98	224.53	15.83	211.56	11.63	1620.22	6.42
Urban Settlement 0.00 0.00 163.66 7.24 243.23 15.67 192.99 15.56 269.93 15.65 113.08 13.59 475.46 23.02 169.76 12.75 332.56 16.91 243.91 11.76 375.11 10.40 23.83 2.75 26.10 1.40 0.00 0.00 83.80 4.61 2713.42 10.75 Rural Settlement 0.87 0.14 7.69 0.34 1.87 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Total Agriculture	91,85	14.76	77.09	3,41	58.05	3.74	53.69	4.33	46,90	2.72	1.02	0.12	59.54	2.88	81.23	6.10	42.90	2.18	81.75	3.94	418.00	11.59	257.51	29.73	153.63	8.21	231,41	16.31	218.07	11.99	1872.64	7.42
Rural Settlement 20.73 3.33 24.84 1.10 8.33 0.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00																																	
Industrial Settlement 0.87 0.14 7.69 0.34 1.87 0.12 0.00 0.00 9.03 0.52 16.81 2.02 17.90 0.87 10.06 0.76 5.36 0.27 18.27 0.88 30.76 0.85 0.00 0.00 1.82 0.10 0.42 0.03 2.86 0.16 123.72 0.49 Total Settlement 21.60 3.47 196.19 8.68 253.43 16.33 192.99 15.56 278.96 16.17 129.89 15.61 494.71 23.96 179.82 13.51 33.79 17.18 303.65 14.64 417.99 11.59 33.47 3.86 82.20 4.40 72.79 5.13 129.04 7.10 3124.64 12.37	Rural Settlement																																
Total Settlement 21.60 3.47 196.19 8.68 253.43 16.33 192.99 15.56 278.96 16.17 129.89 15.61 494.71 23.96 179.82 13.51 337.92 17.18 303.65 14.64 417.98 11.59 33.47 3.86 82.20 4.40 72.79 5.13 129.04 7.10 3124.64 12.37	Ē																																
	Total Settlement Grand Total																																12.37

Chapter 4

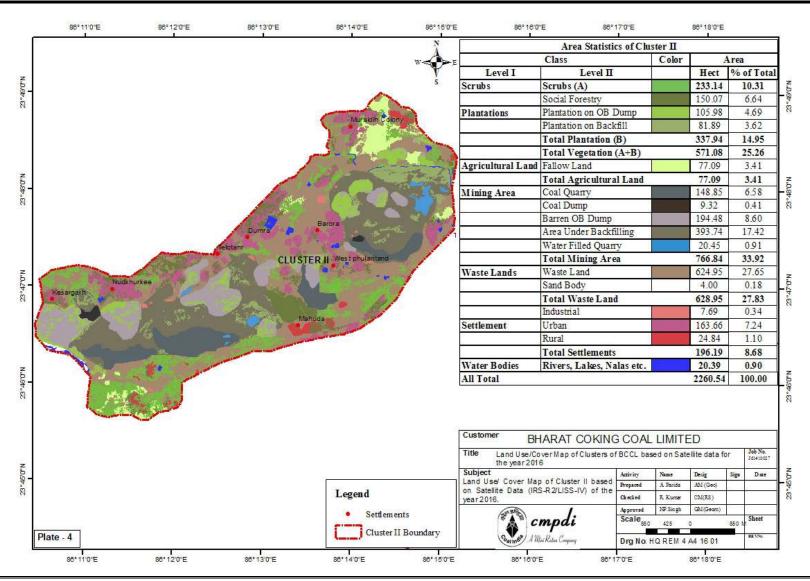
Conclusion & Recommendations

4.1 Conclusion

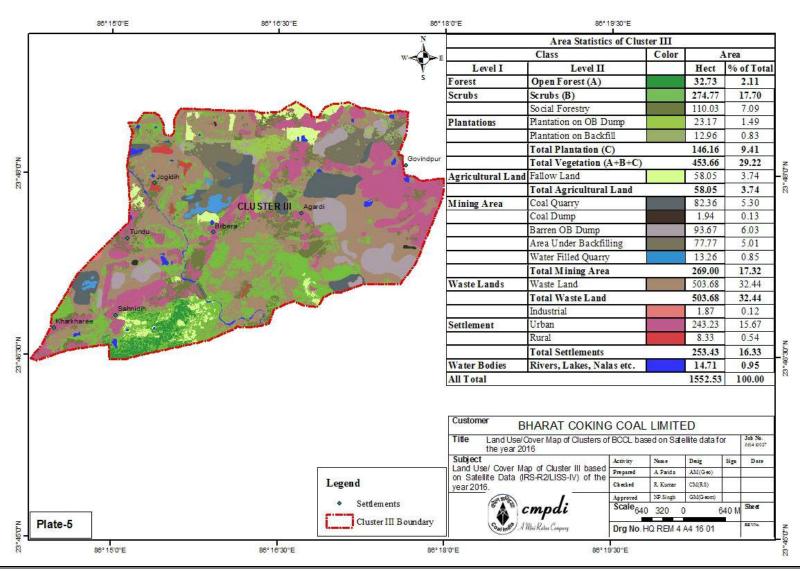
In the present study, land use/ vegetation cover mapping has been carried out based on IRS-R2/ L4FMX satellite data of January, 2016 in order to monitor the impact of coal mining on land environment which may helps in formulating the mitigation measures required, if any.

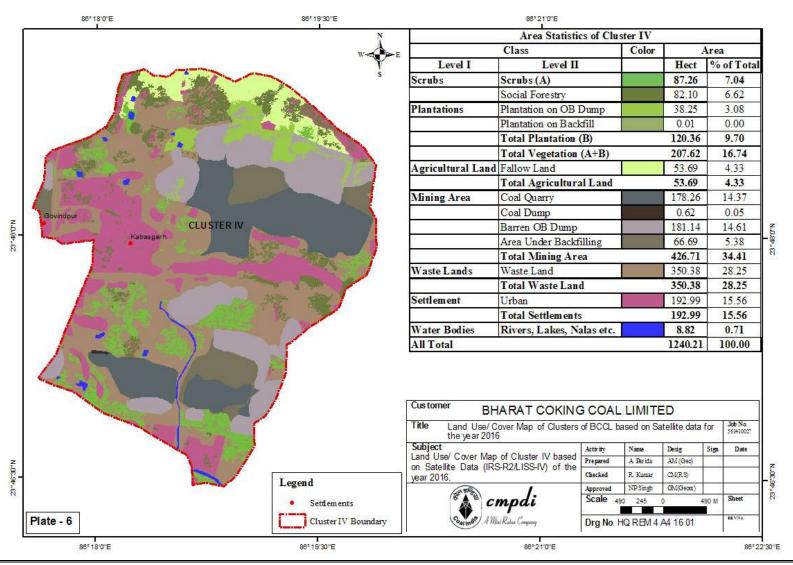

Study reveals that the total area of settlements which includes urban, rural and industrial settlements in the Jharia coalfields covers 41.08 km² (10.45%) area. There is a decrease in settlements by 0.49 sq km over the 2013 study primarily because dismantling of some industrial establishments. Vegetation cover which includes dense forests, open forests, scrubs, avenue plantation & plantation on over-burden dumps, covers an area of 140.54 km² (35.78%). As compared to 2013 study there is a decrease in overall vegetation cover by 22.11 sq km (5.62%) this is mainly because there is a reduction in scrubs areas. Area of scrubs has decreased by 16.63 sq km. because of its use in opencast mines and use of scrub land for agriculture. The analysis further indicates that total agricultural land which includes both crop and fallow land covers an area of 44.39km² (11.31%) has increased 4.60 sq km (1.19%) from that was in 2013. The increase in 4.60 sq km is due to some scrubland getting converted into agricultural land. The mining area which includes coal quarry, advance guarry site, barren OB dump, area under backfilling, covers 40.53 km² (10.32%). There is a significant increase in areas under mining operations because large areas have now been taken up for Open cast mining in BCCL. As compared to 2013 there is an increase of 5.31 sq km (1.35%) in the areas under mining operation. Wasteland covers 118.82 km²

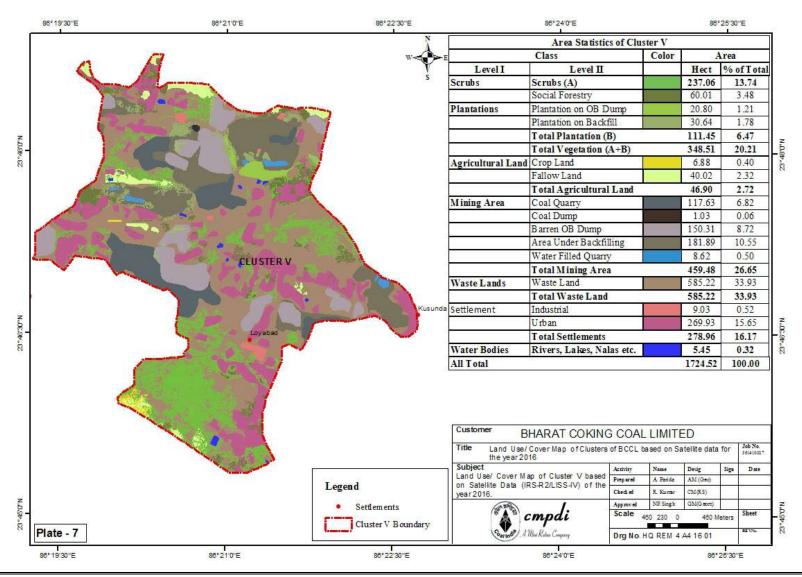
(30.24%). Waste lands have increased because some scrubland has been converted to wasteland. Surface water bodies covered area of 7.48 km² (1.90).

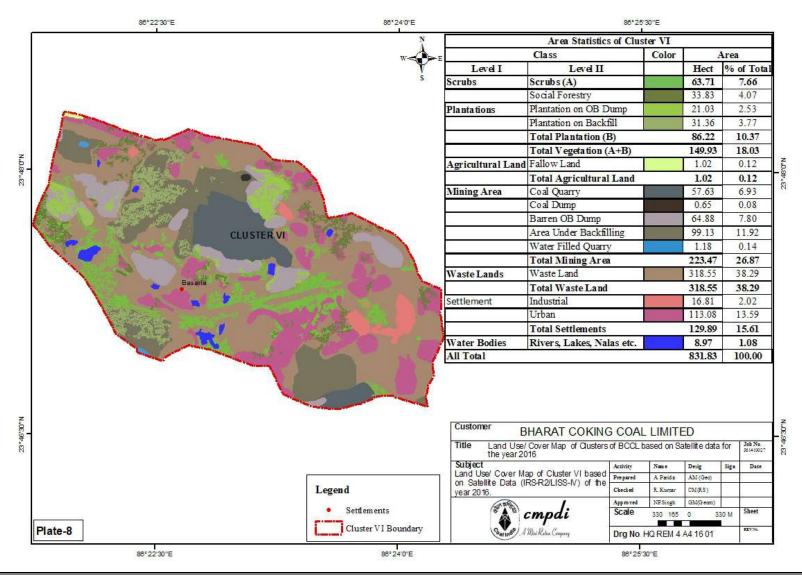

The detail statistical analysis is given under Table-3.2.

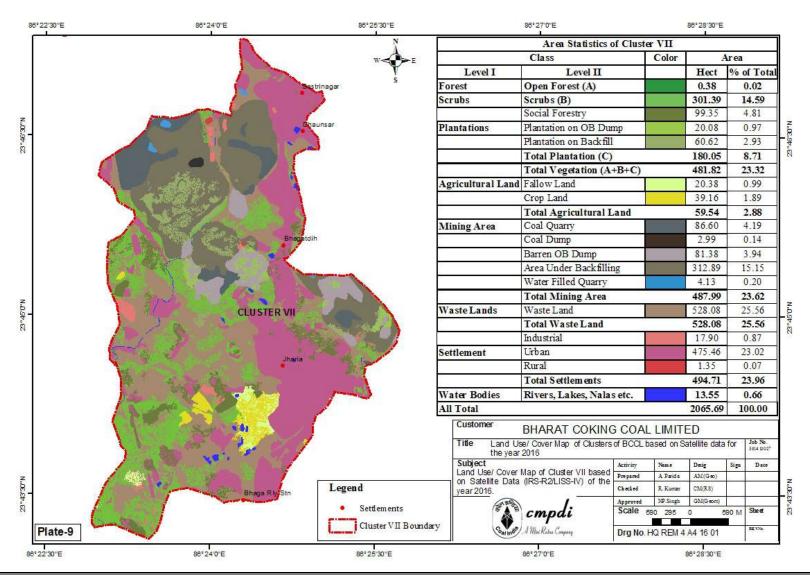
4.2 Recommendations


It is essential to maintain the ecological balance for sustainable development of the area together with coal mining in Jharia Coalfield. It is recommended that land reclamation of the mining area should be taken up on top priority by BCCL. Such studies should be carried out regularly to assess the impact of coal mining on land use pattern and vegetation cover in the coalfield to formulate and take remedial measures, if any, required for mitigating the adverse impact of coal mining on land environment. Regional study will also be helpful in assessing the environmental degradation / up gradation carried out by different industries operating in the coalfield area.

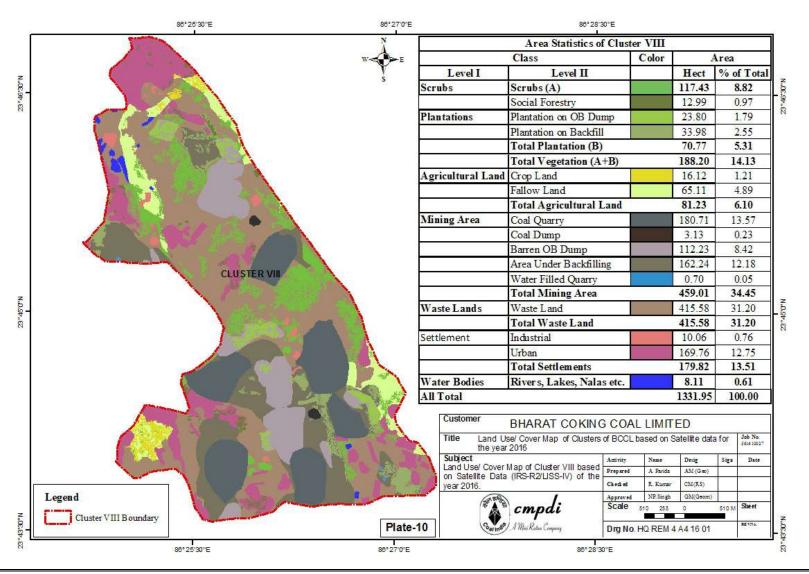

Job No 561410027 Chapter-3 Page 31


Job No 561410027 Chapter-3 Page 32

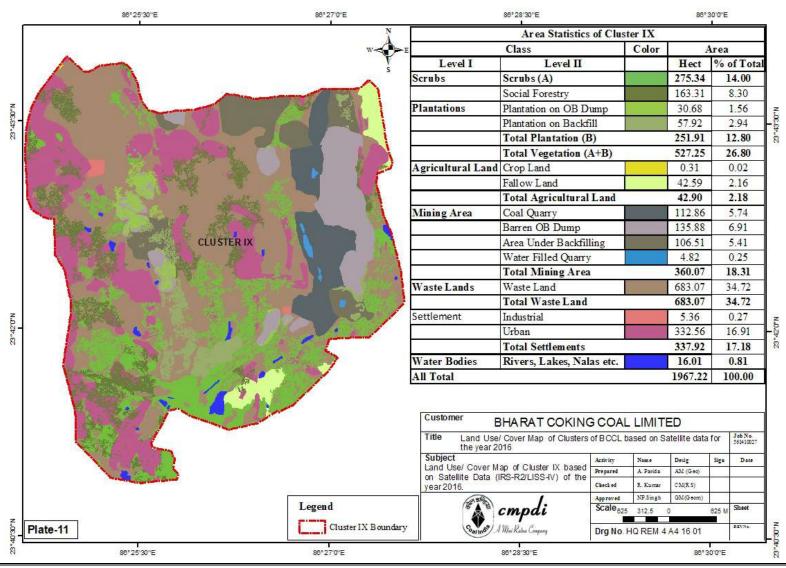

Job No 561410027

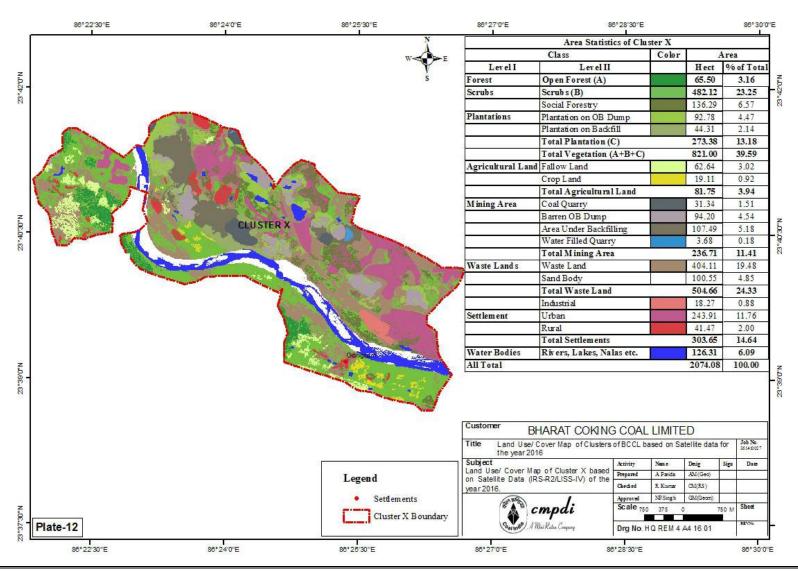


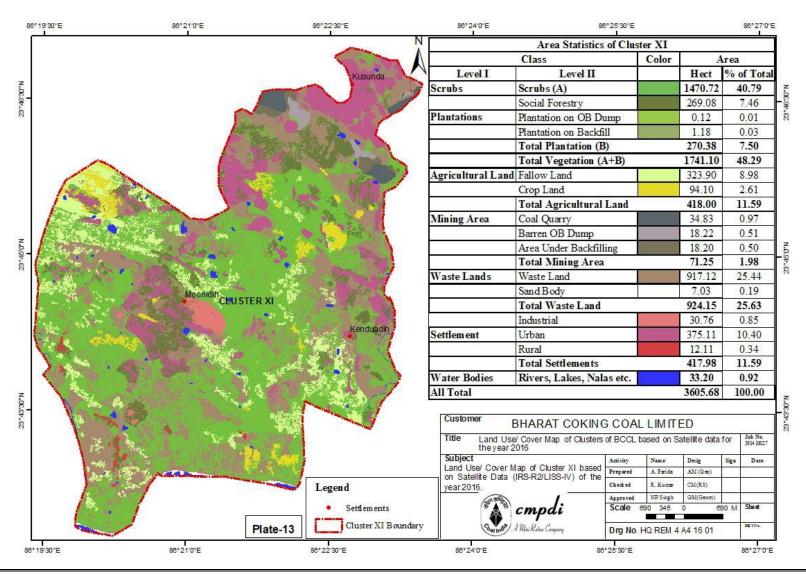
Job No 561410027 Chapter-3 Page 34



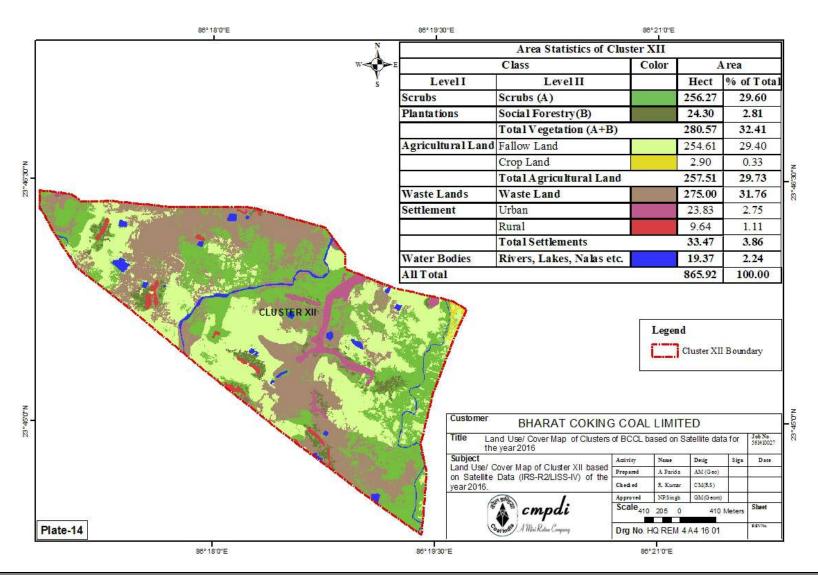
Job No 561410027

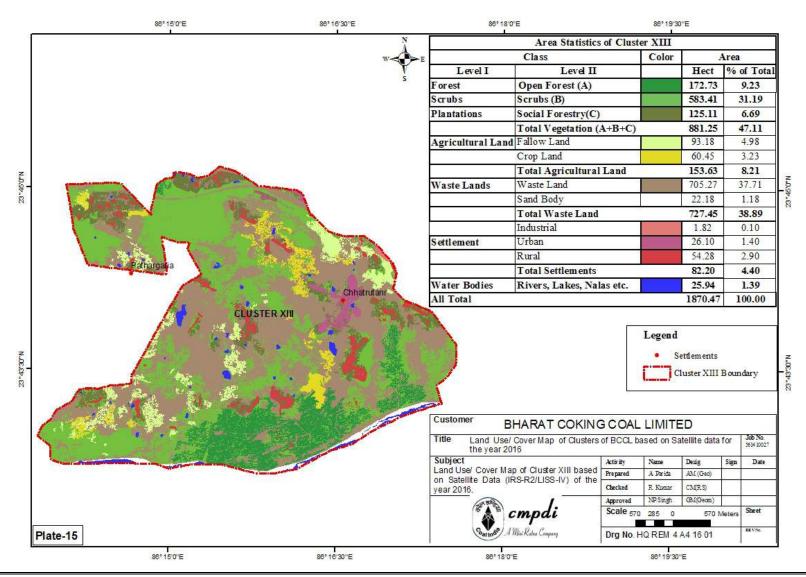


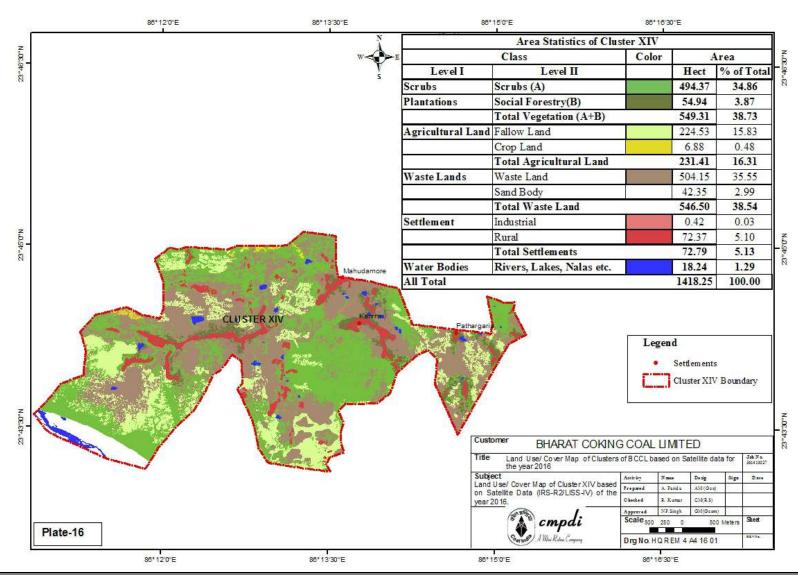

Chapter-3 Page 37



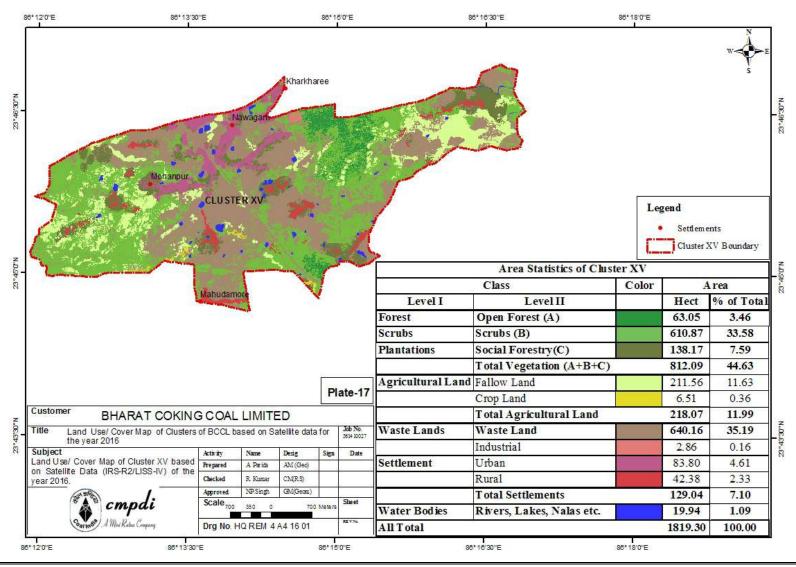
Job No 561410027




Job No 561410027 Chapter-3 Page 39



Chapter-3 Page 41



Chapter-3 Page 43

Job No 561410027 Chapter-3 Page 44

Job No 561410027 Chapter-3 Page 45

STRICTLY RESTRICTED FOR COMPANY USE ONLY RESTRICTED

The information given in this report is not to be communicated either directly or indirectly to the press or to any person not holding an official position in the CIL / GOVERNMENT.

ENVIRONMENTAL MONITORING REPORT OF BHARAT COKING COAL LIMITED, CLUSTER – X

(FOR THE Q.E. MARCH, 2017)

E. C. no. J-11015/380/2010-IA.II (M) dated 06.02.2013-

April, 2017

CLUSTER - X

(FOR THE Q.E. March, 2017)

CONTENTS

SL. NO.	CHAPTER	PARTICULARS	PAGE NO.
1.		EXECUTIVE SUMMARY	1-2
2.	CHAPTER - I	INTRODUCTION	3-4
3.	CHAPTER-II	AMBIENT AIR SAMPLING & ANALYSIS	5-14
4.	CHAPTER-III	WATER SAMPLING & ANALYSIS	15-16
5.	CHAPTER-IV	NOISE SAMPLING & ANALYSIS	17-19
6.	Plates: Plate NO I	SURFACE PLAN SHOWING AIR/NOISE MONITORING STATIONS	20
	Plate NO II	SURFACE PLAN SHOWING WATER MONITORING LOCATIONS	21

STRICTLY RESTRICTED FOR COMPANY USE ONLY RESTRICTED

The information given in this report is not to be communicated either directly or indirectly to the press or to any person not holding an official position in the CIL / GOVERNMENT.

ENVIRONMENTAL MONITORING REPORT OF BHARAT COKING COAL LIMITED CLUSTER – X

(FOR THE Q.E. MARCH, 2017)

E. C. no. J-11015/380/2010-IA.II (M) dated 06.02.2013-

April, 2017

EXECUTIVE SUMMARY

1.0 Introduction

The purpose of environmental monitoring is to assess the quality of various attributes that affects the fauna and flora. In accordance with the quality of these attributes appropriate strategy is to be developed to control the pollution level within the permissible limits. The three major attributes are air, water and noise level.

Bharat Coking Coal Limited (BCCL), a Subsidiary company of Coal India Limited is operating Underground and Opencast Mines in Jharia Coalfield (JCF) is a part of Gondwana Coalfields located in Dhanbad district of Jharkhand, the JCF is bounded by 23°37' N to 23°52' N latitudes and 86°09' E to 86°30' E longitude occupying an area of 450 Sq.km. BCCL has awarded Environmental monitoring work of Jharia Coalfield (JCF) to Central Mine Planning & Design Institute Limited (CMPDIL). The environmental monitoring has been carried out as per the conditions laid down by the MoEF&CC while granting environmental clearance of project, consent letter issued by the respective SPCB, and other statutory requirements.

2.0 Sampling location and rationale

2.1 Ambient air sampling locations

The ambient air quality monitoring stations were selected to represent core, buffer zone area. The rationale has been based on the guidelines stipulated by MoEF&CC, consent letter of SPCB, as well as other statutory requirements.

2.2 Water sampling stations

The Water sampling stations were selected for mine sump water, drinking water supply, well/ Hand pump water also surface water samples.

2.3 Noise level monitoring locations

Noise levels vary depending on the various activities in mining areas. The monitoring of noise level in different locations will be helpful to take appropriate mitigating measures. The noise levels were recorded in mining area, washray and in residential area.

3.0 Methodology of sampling and analysis

3.1 Ambient air quality

Parameters chosen for assessment of ambient air quality were Particulate Matter (PM_{10}), Fine Particulate Matter ($PM_{2.5}$), Sulphur Di-oxide (SO_2) and Nitrogen Oxides (NO_X). Respirable Dust Samplers (RDS) and Fine Dust Sampler ($PM_{2.5}$ sampler) were used for sampling of PM_{10} , SO_2 , & NO_X and Fine Dust Sampler ($PM_{2.5}$ sampler) were used for sampling of $PM_{2.5}$ at 24 hours interval once in a fortnight and the same for the gaseous pollutants. The samples were analyzed in Environmental Laboratory of CMPDI, RI-I, Asansol.

3.2 Water quality

Water samples were collected as per standard practice. The effluent samples were collected and analyzed for four parameters on fortnightly basis. Thereafter the samples were preserved and analyzed at the Environmental Laboratory at CMPDI.

3.3 Noise level monitoring

Noise level measurements in form of ${}^{\prime}L_{EQ}{}^{\prime}$ were taken using Integrated Data Logging Sound Level Meter. Noise levels were measured in Decibels, 'A' weighted average, i.e. dB(A).

4.0 Results and interpretations

4.1 Air quality

It has been seen from the analysis results that the 24 hours average concentration parameters like PM_{10} , $PM_{2.5}$, SO_2 and NO_X are mostly within the permissible limits in all sampling locations as per MoEF&CC Gazette Notification No. GSR 742(E) dt 25.09.2000 Standards for Coal Mines and National Ambient Air Quality Standard -2009. Sometimes the concentration of PM_{10} & $PM_{2.5}$ exceeds the limits due to heavy public traffic, poor road condition, coke oven plants, burning of coal by surrounding habitants, brick making, municipal waste dumps and industries like Steel Plant, thermal Plants including their fly ash etc.

4.2 Water quality

The test results indicate that the major parameters compared with MoEF&CC Gazette Notification No. GSR 742(E) dt 25.09.2000 Standards for Coal Mines, are with in permissible limits.

4.3 Noise Level

During the noise level survey it has been observed that the noise level in the sampling locations is within the permissible limits prescribed as per MoEF&CC Gazette Notification No. GSR 742(E) dt 25.09.2000 Standards for Coal Mines for Industrial Area and Noise pollution (Regulation and Control) Rules, 2000.

CHAPTER - I

INTRODUCTION

1.0 Any industry and development activities including coal mining is bound to affect environmental attributes. There are positive as well as negative impacts of such operations. For controlling the adverse impacts a regular monitoring is essential. The environmental monitoring is being done as per the guide-lines stipulated by Ministry of Environment, Forests and Climate Change (MoEF&CC), Govt. of India.

The very purpose of environmental monitoring is to assess the quality of various attributes which affects the environment. As per quality of these attributes appropriate strategy is to be developed to control the pollution level within the permissible limits. The three major attributes are air, water and noise level.

Bharat Coking Coal Limited (BCCL), a subsidiary company of Coal India Limited (CIL) is operating UG Mines and Opencast Mines in Jharia Coalfield (JCF). The Jharia Coalfield (JCF) having an area of 450 Sq.KM.

Bharat Coking Coal has awarded Environmental Monitoring work of all Projects, Cluster wise, to Central Mine Planning & Design Institute Limited (CMPDIL). The environmental monitoring has been carried out as per conditions laid down by MoEF&CC while granting environmental clearance to different projects. CMPDI has trained manpower and well equipped laboratory to carry out monitoring, analysis and R&D work in the field of environment.

- 1.1 The Cluster-X is in the Eastern part of the Jharia coalfield. It includes a group of 6 Mines (viz. Amlabad UG, Bhowra north, Bhowra South, Patherdih, Sudamdih Incline & Sudamdih Shaft. The Cluster X is situated about 25 30 kms from Dhanbad Railway Station. The mines of this Cluster X are operating since pre nationalization period (prior to 1972-73). It is connected by both Railway and Road. The drainage of the area is governed by Damodar River.
- 1.2 The Cluster-X is designed to produce 1.762 MTPA (normative) and 2.289 MTPA (peak) capacity of coal.

The Project has Environmental Clearance from Ministry of Environment, Forests and Climate Change (MoEF&CC) for a rated capacity 1.762 MTPA (normative) and 2.289 MTPA (peak) capacity of coal production vide letter no. J-11015/380/2010-IA.II (M) dated 06th February, 2013.

Ministry of Environment, Forests and Climate Change while granting environmental clearance has given one of the General conditions that "Four ambient air quality monitoring stations should be established in the core zone as well as in the buffer zone for PM₁₀, PM_{2.5}, SO₂, NOx monitoring. Location of the stations should be decided based on the meteorological data, topographical features and environmentally and ecologically sensitive targets in consultation with the State Pollution Control Board." And other conditions regarding water / effluent and noise level monitoring.

In complianc & report pro authorities.	e of these cond epared for sub	litions the E omission to	invironmental MoEF&CC	Monitoring & SPCB	has been of and other	arried out statutory
		•••••		•••••		

CHAPTER-II

AMBIENT AIR QUALITY MONITORING

2.1 Location of sampling station and their rationale:

(as per G.S.R. 742 (E) dt. 25th December,2000)

2.1.1 Ambient Air Quality Sampling Locations

I. CORE ZONE Monitoring Location

i) Bhowrah North (A14): Industrial Area

The location of the sampling station is 23°40.977' N 86°23.963'E. The sampler was placed at an elevated platform of around 1.5m height from ground level at Guest House of EJ Area. The station was selected to represent the impact of mining activities of Eastern Jharia area, Coal washery, poor roads condition, heavy public traffic, burning of coal by the surrounding habitants.

ii) Sudamdih Washery (A15): Industrial Area

The location of the sampling station is 23° 39'32" N 86° 26'13" E. The sampler was placed at elevated platform of around 1.5m height from ground level at Coal lab near washery. The station was selected to represent the impact of mining activities of Eastern Jharia area, Washery, poor roads condition.

II. BUFFER ZONE Monitoring Location

i) Jeenagora (A13): Industrial Area

The location of the sampling station is 23° 42. 536' N & 86° 24. 664' E. The sampler was placed elevated platform of around 1.5m height from ground level at Safety Office.

ii) Sitanala (A30): Industrial Area

This location is at the Amlabad Project office which is currently in-operational. It has been selected to study the impact of Air pollution in the buffer zone on the Cluster.

2.2 Methodology of sampling and analysis

Parameters chosen for assessment of ambient air quality were Particulate Matter (PM_{10}), Particulate Matter ($PM_{2.5}$), Sulphur di-oxide (SO_2) and Nitrogen oxides (NO_X). Respirable Dust Samplers (RDS) & fine particulates for $PM_{2.5}$ sampler were used for sampling PM_{10} & $PM_{2.5}$ respectively at 24 hours interval once in a fortnight and the same for the gaseous pollutants. The samples were analysed in Environmental Laboratory of CMPDI, RI-I, Asansol.

2.3 Results & Interpretations

The results of Ambient Air Quality are presented in tabular form along with Bar chart for each monitoring station. The interpretations of different parameters are given below:

2.3.1 Ambient air quality

Particulate Matter PM₁₀

In **core zone** under **Industrial area** varies from 96 to 142 µg/m³ In **buffer zone** in **Industrial area** varies from 124 to 125 µg/m³

Particulate Matter PM_{2.5}

In **core zone** under **Industrial area** varies from 62 to 76 µg/m³ In **buffer zone** in **Industrial area** varies from 68 to 70 µg/m³

Sulphur Dioxide:

In **core zone** under **Industrial area** varies from 10 to 12 μg/m³ In **buffer zone** in **Industrial area** varies from 10 to 12 μg/m³

Oxides of Nitrogen:

In **core zone** under **Industrial area** varies from 24 to 28 µg/m³ In **buffer zone** in **Industrial area** varies from 26 to 30 µg/m³

AMBIENT AIR QUALITY DATA

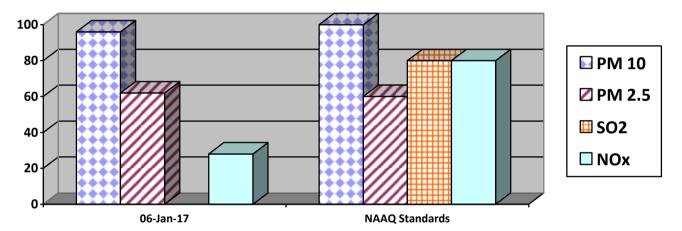
Name of the Company: Bharat Coking Coal limited

Name of the Cluster: Cluster - X

Year : **2016-17.** Q.E.: **March, 2017**

Station Code/Name: (a)

(a) A14 Bhowrah North


Category: Industrial.

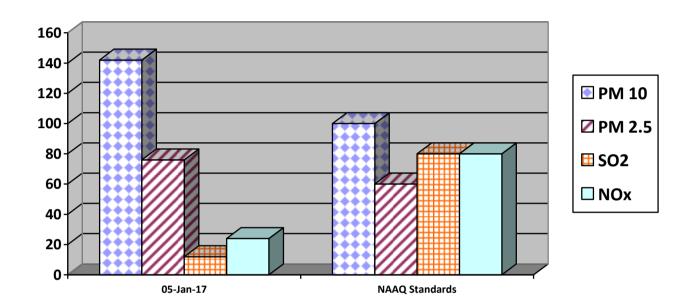
(b) A15 Sudamdih Washery

ZONE: Core

(a). Station Code/Name: A14 Bhowrah North, Category: Industrial¹.

SI. No.	Dates of sampling	PM 10	PM 2.5	SO ₂	NO _X
1	06 - Jan - 17	96	62	<10	28
	NAAQ Standards	100	60	80	80

Note:


- > All values are expressed in microgram per cubic meter.
- > 24 hours duration.

Analysed By JSA/SA/SSA

Checked By Lab In Charge RI-2, CMPDI, Dhanbad Approved By HOD(Mining/Environment) RI-2, CMPDI, Dhanbad

(b). Station Code/Name: A15- Sudamduh Washery Category: Industrial².

SI. No.	Dates of sampling	PM 10	PM 2.5	SO2	NOx
1	05- Jan - 17	142	76	12	24
N	IAAQ Standards	100	60	80	80

Note:

- > All values are expressed in microgram per cubic meter.
- > 24 hours duration

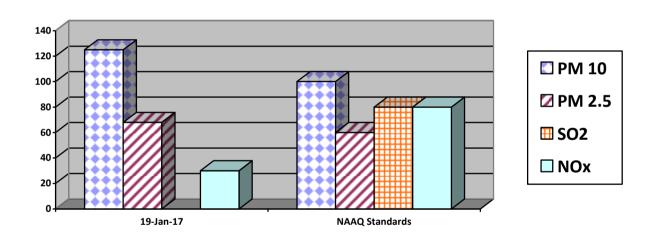
Analysed By

JSA/SA/SSA

Checked By Lab In Charge RI-2, CMPDI, Dhanbad

AMBIENT AIR QUALITY DATA

Name of the Company: **Bharat Coking Coal limited** Year : **2016-17.** Name of the Cluster : **Cluster – X** Q.E.: **March, 2017**

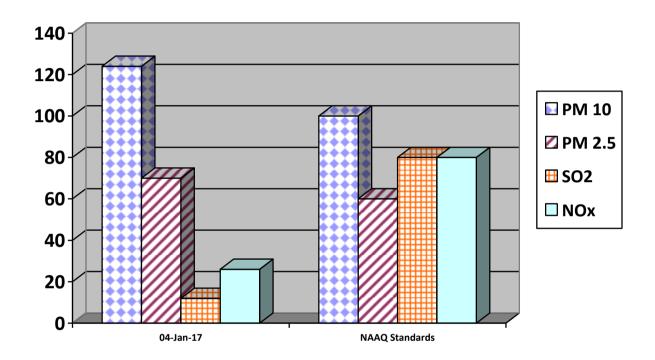

Station Code/Name: (a) A13- Jeenagora Category: Industrial.

(b) A30 - Sitanala

ZONE: BUFFER

(a). Station Code/Name: A13 – Jeenagora, Category: Industrial³.

SI. No.	Dates of sampling	PM 10	PM 2.5	SO ₂	NO _X
1	19 - Jan -17	125	68	<10	30
	NAAQ Standards	100	60	80	80

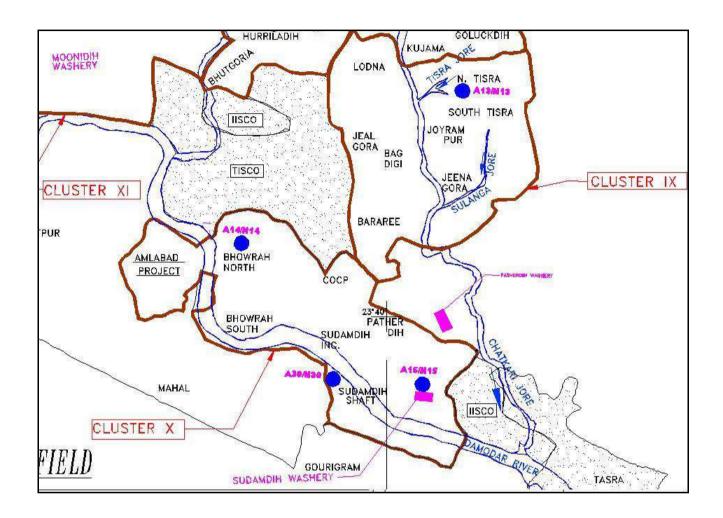

Note:

- > All values are expressed in microgram per cubic meter.
- > 24 hours duration

Analysed By JSA/SA/SSA Checked By Lab In Charge RI-2, CMPDI, Dhanbad

(b). Station Code/Name: A30 - Sitanala, Category: Industrial⁴.

SI. No.	Dates of sampling	PM 10	PM 2.5	SO ₂	NO _X
1	04 - Jan - 17	124	70	12	26
	NAAQ Standards	100	60	80	80


Note:

- > All values are expressed in microgram per cubic meter.
- > 24 hours duration

Apply Apply Do

Analysed By JSA/SA/SSA Checked By Lab In Charge RI-2, CMPDI, Dhanbad

Ambient Air Monitoring Stations in Cluster- X in Core & Buffer Zones

Ambient Air Quality Standards for Jharia Coal Field As per the Environment (Protection) Amendment Rules, 2000 notified vide notification G.S.R. 742(E), dated 25.9.2000.

Category	Pollutant	Time weighted average	Concentration in Ambient Air	Method of Measurement
1	2	3	4	5
Coal mines located in the coal fields of Jharia Raniganj Bokaro	Suspended Particulate Matter (SPM)	Annual Average * 24 hours **	500 μg/m ³ 700 μg/m ³	- High Volume Sampling (Average flow rate not less than 1.1 m³/minute)
• Bokaro	Respirable Particulate Matter (size less than 10 µm) (RPM)	Annual Average * 24 hours **	$250 \ \mu g/m^3$ $300 \ \mu g/m^3$	Respirable Particulate Matter sampling and analysis
	Sulphur Dioxide (SO ₂)	Annual Average * 24 hours **	$80 \ \mu g/m^3$ $120 \ \mu g/m^3$	1.Improved west and Gaeke method 2.Ultraviolet fluorescene
	Oxide of Nitrogen as NO ₂	Annual Average * 24 hours **	$80 \mu g/m^3$ $120 \mu g/m^3$	1. Jacob & Hochheiser Modified (Na- Arsenic) Method 2. Gas phase Chemilumine- scence

Note:

^{*} Annual Arithmetic mean for the measurements taken in a year, following the guidelines for frequency of sampling laid down in clause 2.

^{** 24} hourly / 8 hourly values shall be met 92% of the time in a year. However, 8% of the time it may exceed but not on two consecutive days.

NATIONAL AMBIENT AIR QUALITY STANDARDS

New Delhi the 18th November 2009

In exercise of the powers conferred by Sub-section (2) (h) of section 16 of the Air (Prevention and Control of Pollution) Act, 1981 (Act No. 14 of 1981), and in supersession of the notification No(s).S.O.384(E), dated 11th April 1994 and S.O.935(E), dated 14th October 1998, the Central Pollution Control Board hereby notify the National Ambient Air Quality Standards with immediate effect

Pollutant		Time Weighted	Concentra	ition in Ambient Air	Methods of Measurement
μg/m³ 24 Hours *** 80 80 Method Ultraviolet Fluorescence		_	Residenti al, Rural and other	Sensitive Area (Notified by Central	
μg/m³ 24 Hours *** 80 80 (NaOH-NaAsO₂) Method -Gas Phase Chemiluminescence	μg/m³	24 Hours **			Method
Less than 10μm) or PM ₁₀ , μg/m³					(NaOH-NaAsO ₂) Method -Gas Phase
less than 2.5μm) or PM2.5, μg/m³24 Hours **6060-TEOM -Beta attenuationOzone (O3) , μg/m³8 Hours *100100-UV Photometric1 Hour **180180-Chemiluminescence -Chemical MethodLead (Pb) , μg/m³Annual * 24 Hours **0.500.50-AAS/ICP Method after sampling on EPM 2000 or equivalent filter paper -ED-XRF using Teflon filterCarbon Monoxide (CO), mg/m³8 Hours ** 1 Hour **02 0402 04-Non dispersive Infrared (NDIR) SpectroscopyAmmonia (NH3), μg/m³Annual * 24 Hours **100 400100 400-Chemiluminescence -Indophenol blue methodBenzene (C6H6), μg/m³Annual * 24 Hours **0505-Gas Chromatography (GC) based continuous analyzer -Adsorption and desorption followed by GC analysisBenzo(a)Pyrene (BaP) Particulate phase only, ng/m³Annual *0101-Solvent extraction followed byHPLC/GC analysisArsenic (As), ng/m³Annual *06-AAS/ICP Method after sampling on EPM 2000 or equivalent filter paperNickel (Ni), ng/m³Annual *2020-AAS/ICP Method after sampling on EPM 2000 or	less than 10μm) or PM ₁₀ , μg/m³	24 Hours **			-TEOM
Lead (Pb) , μg/m³ Annual * 24 Hours *** 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	less than 2.5µm) or PM _{2.5} ,				-TEOM
24 Hours ** 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	(),,,,				-Chemiluminescence
Carbon Monoxide (CO), mg/m³8 Hours ** 1 Hour **02 0402 04-Non dispersive Infrared (NDIR) 	Lead (Pb) , µg/m³				sampling on EPM 2000 or equivalent filter paper
Benzene (C ₆ H ₆), μg/m³ Annual * O5 O5 Gas Chromatography (GC) based continuous analyzer -Adsorption and desorption followed by GC analysis Benzo(a)Pyrene (BaP) Particulate phase only, ng/m³ Arsenic (As), ng/m³ Annual * O6 O6 -AAS/ICP Method after sampling on EPM 2000 or equivalent filter paper Nickel (Ni), ng/m³ Annual * O2 O3 Annual * O6 Annual * O6 Annual * O6 Annual * O6 Annual * O7 Annual * O8 Annual * O8 Annual * O8 Annual * O8 Annual * O9 Annu		1 Hour **			-Non dispersive Infrared (NDIR)
based continuous analyzer -Adsorption and desorption followed by GC analysis Benzo(a)Pyrene (BaP) Particulate phase only, ng/m³ Arsenic (As), ng/m³ Annual * O6 O6 -AAS/ICP Method after sampling on EPM 2000 or equivalent filter paper Nickel (Ni), ng/m³ Annual * O6 O6 -AAS/ICP Method after sampling on EPM 2000 or equivalent filter paper	Ammonia (NH₃), μg/m³				
Particulate phase only, ng/m³ byHPLC/GC analysis Arsenic (As), ng/m³ Annual * 06 06 -AAS/ICP Method after sampling on EPM 2000 or equivalent filter paper Nickel (Ni), ng/m³ Annual * 20 20 -AAS/ICP Method after sampling on EPM 2000 or	Benzene (C ₆ H ₆), μg/m ³	Annual *	05	05	based continuous analyzer -Adsorption and desorption
Nickel (Ni), ng/m³ Annual * 20 20 sampling on EPM 2000 or equivalent filter paper -AAS/ICP Method after sampling on EPM 2000 or	Particulate phase only, ng/m ³				byHPLC/GC analysis
Nickel (Ni), ng/m³ Annual * 20 20 -AAS/ICP Method after sampling on EPM 2000 or	Arsenic (As), ng/m ³	Annual *	06	06	sampling on EPM 2000 or
	Nickel (Ni), ng/m ³	Annual *	20	20	-AAS/ICP Method after

^{*} Annual Arithmetic mean of minimum 104 measurements in a year at a particular site taken twice a week 24 hourly at uniform intervals.

** 24 hourly or 8 hourly or 1 hourly monitored values, as applicable, shall be complied with 98% of the time in a year. 2% of the time, they may exceed the limits but not on two consecutive days of monitoring.

NOTE: Whenever and wherever monitoring results on two consecutive days of monitoring exceed the limits specified above for the respective category, it shall be considered adequate reason to institute regular or continuous monitoring and further investigations.

CHAPTER - III

WATER QUALITY MONITORING

3.1 **Location of sampling sites**

(Refer Plate No. - II)

i) Mine Discharge of Bhowrah North (MW10)

A sampling point is fixed to assess the effluent quality of Mine discharge. This location is selected to monitor effluent discharge in to Kashi jore.

3.2 Methodology of sampling and analysis

Water samples were collected as per standard practice. The effluent samples were collected and analysed for four parameters on fortnightly basis at the Environmental Laboratory at CMPDI.

3.3 Results & Interpretations

The results are given in tabular form along with the applicable standards. Results are compared with Schedule - VI, effluent prescribed by MoEF&CC. Results show that all the parmeters are within the permissible limits.

WATER QUALITY DATA

(EFFLUENT WATER-FOUR PARAMETERS)

Name of the Company: Bharat Coking Coal Year: 2016-17.

Limited

Name of the Cluster: Cluster - X Month: January, 2017.

Name of the Stations & Code : 1. MW10- Mine Discharge of

Bhowrah North

First Fortnight

SI.		MW10	As per MOEF&CC General
No.	Parameters	(Mine Discharge)	Standards for schedule VI
		06.01.2017	
1	Total Suspended Solids	64	100 (Max)
2	pH	9.24	5.5 - 9.0
3	Oil & Grease	<2.0	10 (Max)
4	COD	44	250 (Max)

Second Fortnight

SI. No.	Parameters	MW10 (Mine Discharge) 19.01.2017	As per MOEF&CC General Standards for schedule VI
1	Total Suspended Solids	36	100 (Max)
2	рН	9.05	5.5 - 9.0
3	Oil & Grease	<2.0	10 (Max)
4	COD	36	250 (Max)

All values are expressed in mg/lit unless specified.

Analysed By JSA/SA/SSA

Checked By Lab Incharge Env. Lab, RI-2, CMPDI Approved By Dy.Technical Manager Env. Lab, CMPDI (HQ),

(Authorized Signatory)

CHAPTER - IV NOISE LEVEL QUALITY MONITORING

4.1 Location of sampling sites and their rationale

i) Bhowrah North (N14)

To assess the noise level nearby the mine area, the noise levels were recorded.

ii) Sudamdih Wahery (N15)

To assess the noise level in washery area, the noise levels were recorded.

iii) Jeenagora (N13)

To assess the noise level in the vicinity of the Safety Office, the noise levels were recorded.

iv) Sitanala (N30)

To assess the noise level in the vicinity of the Amlabad Project office, the noise levels were recorded.

4.2 Methodology of sampling and analysis

Noise level measurements in form of 'Leq' were taken using Integrated Data Logging Sound Level Meter (NL-52 OF RION CO. Ltd. Make) during day time. Noise levels were measured for about one hour time in day time. Noise levels were measured in Decibels, 'A' weighted average, i.e. dB (A).

4.3 Results & Interpretations

Ambient noise levels were recorded during day time and the observed values were compared with standards prescribed by MoEF&CC.

The results of Noise levels recorded during day time on fortnightly basis are presented in tabular form along with the applicable standard permissible limits. The observed values in terms of Leq are presented.

The observed values at all the monitoring locations are found to be within permissible limits.

NOISE LEVEL DATA

Name of the Company: **Bharat Coking** Year: 2016-17.

Coal Limited

Name of the Cluster: Cluster -X Month: January, 2017.

Name of the Stations & Code : 1. Bhowrah North (N14)

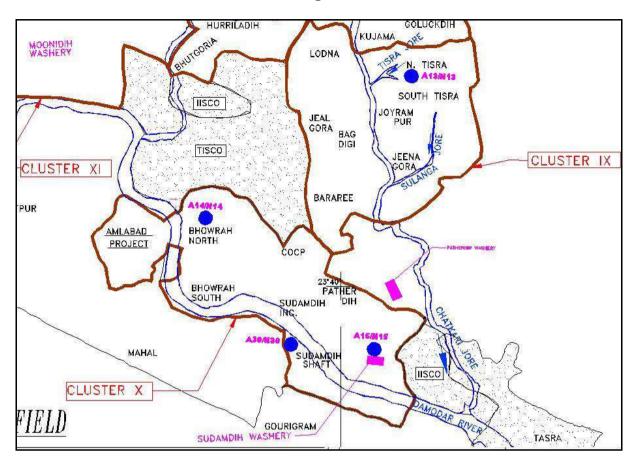
2. Sudamdih Washery (N15)

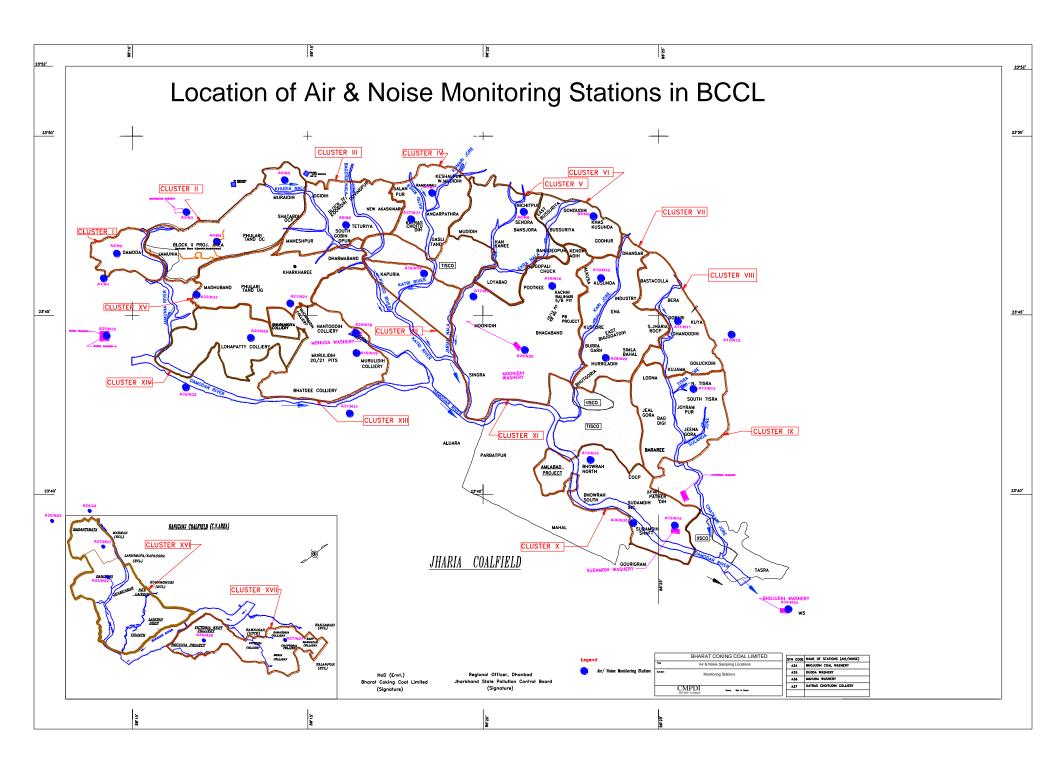
Jeenagora (N13)
 Sitanala (N30)

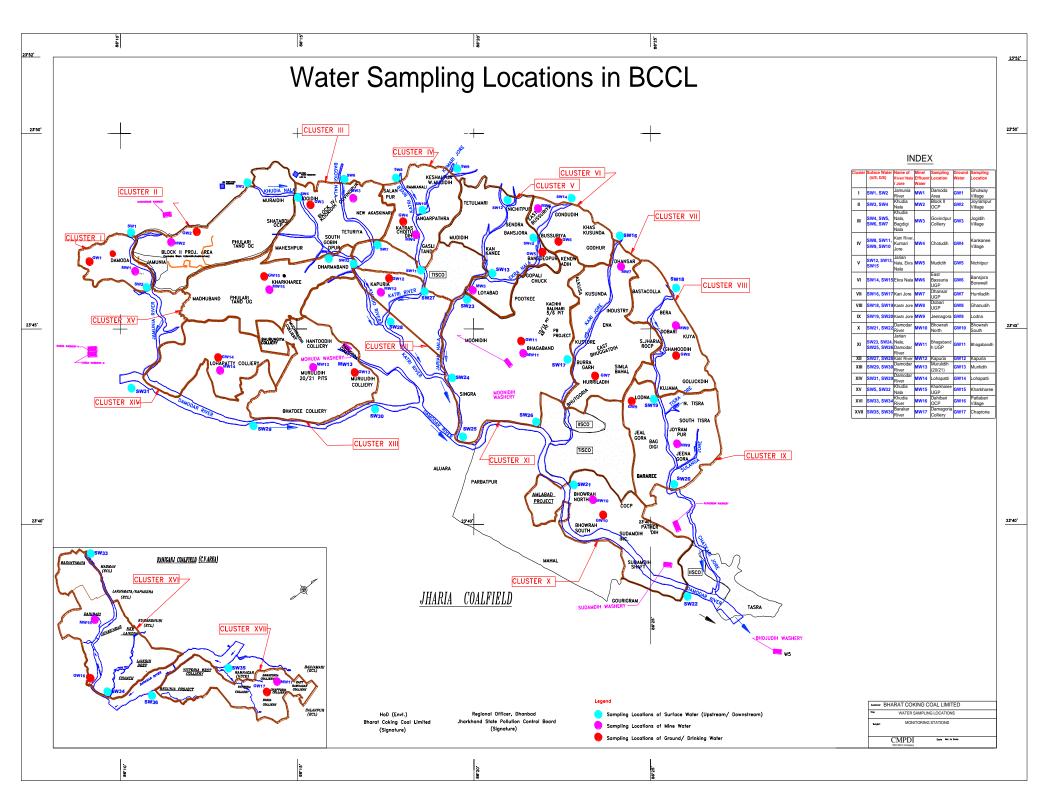
(a) First Fortnight

SI. No.	Station Name/Code	Category of area	Date	Noise level dB(A)LEQ	*Permissible Limit of Noise level in dB(A)
1	Bhowrah North (N14)	Industrial area	06.01.2017	57.8	75
2.	Sudamdih Washery (N15)	Industrial area	05.01.2017	54.4	75
3.	Sitanala (N30)	Industrial area	04.01.2017	59.2	75

b. Second Fortnight


SI. No.	Station Name/Code	Category of area	Date	Noise level dB(A)LEQ	*Permissible Limit of Noise level in dB(A)
1	Jeenagora (N13)	Industrial area	19.01.2017	54.6	<i>7</i> 5


Analysed By


Analysed By JSA/SA/SSA Checked By Lab In Charge RI-2, CMPDI, Dhanbad

^{*}Permissible limits of Noise Level as per MOEF&CC Gazette Notification No. GSR 742(E) dt. 25.09.2000 Standards for Coal Mines and Noise Pollution (Regulation and Control) Rules, 2000. * Day Time: 6.00 AM to 10.00 PM.

Noise Level Monitoring Location of Cluster X

LIST OF INITIAL MEDICAL EXAMINATION & PERIODICAL MEDICAL EXAMINATION FOR 2016-17

PME & VTC

	Target	Target	Actual	
	Annual	From April 16 to	Up to March 17	Achievement
		March17		
PME (2016-17)	951	951	993	>100%
VTC (2016-17)	472	472	488	>100%

Contractual Workers: Training		IME	
2014-15	15	2014-2015	15
2015-16	78	2015-2016	74
2016-17	78	2016-17 (till Dec.16)	62

Bharat coking coal limited

(A Subsidiary of Coal India Ltd)

Office of the Project Officer, Bhowra (N), Eastern Jharia Area,
P.O. Bhowra, Dist. Dhanbad (Jharkhand), PIN-828302

Ref. No:-BCCL/EJA/BH(N)//2017/ 333

Date:-17-6-2017

To,
The Member Secretary,
Jharkhand State Pollution Control Board
T. A. Division Building (Ground Floor)
H. E. C. Dhurva.
Ranchi – 834004

Sub: - Submission of Environmental Statement in From - V

Dear Sir,

Environmental Statement is Form – V is being submitted to you for financial year 2016-17 in respect of Bhowra (N) U/G Mines.

Enclosures: - As above.

Yours Faithfully

Distribution:-

1. The Regional Office, JSPCB Office, HIG Dhanbad

2. The General Manager (Env.), BCCL, Koyla Bhawan.

3. The Area Manager (Env.), E. J. Area, Bhowra.

4. Office File.

(Form - V)

(See rule 14)

Environmental Statement for the financial year ending the 31st March 2017

PART - A

(i) Name and address of the owner/occupier: D. Gangopadhayay, D.T. (P&P) BCCL,

of the industry operation or process Koyla Nagar, Dhanbad

(ii) Industry category : Coal Mining Industry

(iii) Production capacity : U/G - 0.143 MTY

OCP - 0.546 MTY

: 19.08.2016, (Ref.No:

(EC no: - J-11015/380/2010-1A-II(M),

dt: 06/02/13)

(iv) Year of establishment : Colliery operating since pre nationalization

period and vested in BCCL through Coal

Mine Nationalisation Act 1972-73

(v) Date of last environmental Bh(N)/U/G/Mines/2016/405)

statement submitted

PART - B

Water and River Material Consumption

Water Consumption	
Process (Dust separation)	60M³/day
Cooling	Nil
Domestic	120M³/day

Name of Products	Process water consumption pre unit of product output		
	During the previous financial year	During the current financial year	
N/A	N/A	N/A	

Raw Material Consumption

Name of materials	Name of products	Consumption of raw material per Unit of output		
		During the previous financial year (2015-16)	During the current financial year (2016-17)	
Diesel	Coal	3.26 L/Te	0.1368 L/Te	
Explosive	Coal	1.58 Kg/ Te	0.2347 Kg/ Te	
Timber	Coal	Share State of the Court of the	S- 0.081 nos./Te; P- 0.019 nos./Te *	

^{*}S - wooden sleepers, P- wooden props.

Pollution discharged to environment/unit of output (parameter as specified in the consent issued)

Pollutants	Quantity of pollutants discharge	Concentrations of pollutants in discharge(mass/volume)	Percentage of variation from prescribed standards with reasons
Water		(MW-10, 15.11.16) TSS -36 PH -8.29 Oil & Grease - <2.0 COD -46	Within Limit
Air		(as on 22.12.16) PM 10 - 97 PM 2.5 - 55 SO ₂ - 12 NO _x - 29	Within limit

PART - D

Hazardous Wastes

(as specified under Hazardous waste management and handling rules, 1989)

Hazardous Waste	Total Quantity (Kg.)		
	During the previous financial year (2015-16)	During the current financial year (2016-17)	
From process From pollution control facilities	Burnt oil - 420 Litre N/A	Burnt oil - Litre	

PART - E

Solid Wastes

	Solid Wastes	Total Quantity		
		During the previous financial year	During the current financial year	
(a)) Process	Removal of OB from OCP 321554.58M ³	Nil	
(b) Pollution control facility		Nil	Nil	
(c)	1.Quantity recycled or re-utilized within the unit		Quantity of Burnt oil used in u/g mine for lubrication in transportation system/haulage system - 200 Litre.	
	2. Sold		Nil	
	3. Disposed	Market Market	Nil	

Please specify the characterizations (in terms of composition of quantum) of hazardous as well as solid waste and indicate disposal practice adopted for both these categories of wastes.

(i) Type of Rocks :- N/A
(ii) Type of soil :- N/A
(iii) Chemical properties of soil: - N/A
(iv) Disposal process for Solid
Waste (backfilling practice): - N/A

PART - G

Impact of pollution abatement measures taken on conservation of nature resources and on the cost of production

(i) No. of plants planted :
(ii) Cost of plants :
(iii) Plantation cost incurred :
(iv) Backfilling cost :

PART - H

Additional measures/investment proposal for environmental protection including abatement of pollution, prevention of pollution

- (i) Water sprinkling is done in transporting road, siding, working faces, etc. to reduce dust emission.
- (ii) Proper and timely maintenance of dumper, SDL machine, fan, pumps etc. is being done to control noise pollution.
- (iii) Monitoring of air quality, water quality and noise levels are being done periodically.

PART-I

Any other particulars for improving the quality of the environment

Project officer
BBOUND OFFICER
BHOWRA (N) U/O MINES

भारत कोकिंग कोल लिमिटेड

एक मिनी रत कपनी

(कोस इण्डिया जिमिटेड का एक जंग) परियानना पदाधिकारी का कायोलय, आँस दांक्षण कालियरी परि - भौरा, जिला - धनबाद (असळण्ड), १४० - ११४४,१४२

BHARAT COKING COAL LIMITED

A MINI RATNA COMPANY

(A SUBSIDIARY OF COAL INDIA LIMITED)

OFFICE OF THE PROJECT OFFICER BROWNS SOUTH CRUZENY P.O. - BIRAWIS, DIST. - DELANBAD (HABRIHAND), PIN - 829302

Ref. no - BII(S)/2017/ 206

Date - 22-06-2017

To.

The Member Secretary,
Jharkhand State Pollution Control Board, Ranchi,
T.A Division Building H.E.C,
Ground Floor, Dhurwa, Ranchi - 834004

Dear Sir.

We are enclosing herewith Form – V (Environmental Statement) in respect of Bhowra (South) Colliery (U/G + 3 PTT OCP + Chandan OCP) for the year 2016-2017.

This is for your kind Information & record Pl.

C.C. to:
1. The Regional Officer, Jharkhand State
Pollution Board, Housing Board Colony,
Patel Nagar, Dhanbad

2. Office File

Project Officer
Bhowra State
Bhowra Bhowra State
Bhowra Bhowra

Con India

2401-2668/2669, K

FORMS . Ph

'IFORM V

(See rule 14)

ENVIRONMENTAL STATEMENT FOR THE FINANCIAL YEAR ENDING THE 31ST MARCH 2016 - 2017

PART A

- (i) Name and address of the owner/occupier of the industry operation or process.
- (ii) Industry category Primary—(STC Code) Secondary—(STC Code).
- (iii) Production capacity-Units- 0.887 MTY.
- (iv) Year of establishment.
- (v) Date of the last environmental statement submitted. 1.07.2016.

		B

Spraying by Sprinkles or bix Sprinkeless-loked Water and Rase Material Consumption

(1) Water consumption m3/d

Process

Cooling

Domestic

Name of products	Process water consumption per unit of product output		
	During the previous financial year	During the current financial year	
	(1)	(2)	
(1)	NU	NU.	
(2)			5.76
(3)			
(2) Raw material co	onsumption	4	
*Name of raw materials	Name of Consumpt	ion of raw material per unit	
Bablosnic	Cool During the prev	tious During the current r wathin Limitinancial year wal	thin Li

'Industry may use codes if disclosing details of raw material would violate contractual obligations, otherwise all industries have to name the raw materials used.

PART C

Pollution discharged to environment/unit of output.

-	Pollution	Quantity of pollu-	Saued) Concentrations of	Percentage of varia-
(1)	rodution	tants discharged (mass/day)	pollutants in dis- charges (mass/ volume)	tion from prescri- bed standards with reasons
-	(a) Water	NU	NU	-Nu.
	(b) Air	NU	NU	NV.
-		Basilia	DADE D	

PART D

Hazardous Wastes

(as specified under Hazardous Wastes (Management and Handling) Rules, 1989)

Hazardous Wastes	Total Quantity (Kg)		
Hazardow	During the previous financial year	During the current financial year	
(a) From process	NU.	Nu.	
(b) From pollution control facilities.	Nu	NU.	
	PART E	3952	
Cal	IId Wastes	The state of the s	

Solid Wastes

Total Quantity During the current tinancial year

During the previous tinancial year NU

NU. Spraying

spraying (b) From pollution control facility -

J. (1) Quantity recycled or re-utilized within the unit (2) Sold

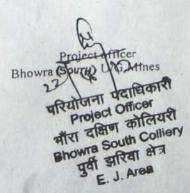
(3) Disposed

PART-F

Please specify the characterization (in term of composite and quantum) of Hazardous as well as solid wastes and indicate disposal practice adopted f or both these categories of wastes.

a) For Underground/Collieries -

Not applicable as neither Hazardous Wastes nor solid wastes are generated.


PART-G

Impact of the pollution abatement measure taken on conservation of natural resource and on production.

Various pollution abatement measure are practiced by which the impacts on the environment has become positive.

Due cares is taken to conserve the natural resources and protect the environment and all its component. The following pollution abatement measure are undertaken:-

- Water Sprinkling is done in road, sidings, coal transportation points CHP crushers to control dust. The
 water sprinkling greatly reduces fugitive dust emission thereby reducing the air pollution levels. Water
 sprinklers are provided on tipplers and in coal stock.
- Road maintenance:
 Maintenance of all roads within the unit lease hold area is being done to control dust. This also helps in reducing the vehicle exhausts.
- Tree plantation:
 Tree plantation is done as a apart of biological reclamation. Plantation help in reducing noise, dust and soil erosion (check).
- Noise abatement in done by proper maintenance of the vehicle, drills and other machines. Workers are
 provided with car muffs. Tree planted near the work place which help in dampening the extra notice.
- 5. Soil erosion control various soil erosion control measure like tree plantation. Construction of diversion channels, Check dame, settling ponds/ditchen contour terrecting storm water discharge drain etc is done.
- 6. Machine maintenance Proper and timely maintenance of the machine/ vehicles operating in the unit are done which help in reduction of vehicle exhausts and noise pollution.
- Vehicles exhaust control Exhaust monitoring in some vehicle exhaust are controlled by proper and timely maintenance of the vehicles.
- 8. Ambient Air/Water and noise monitoring Monitoring for ambient air, water quality and noise levels are periodically done.
- Community Awareness Welfare officers are there in the unit to propagate awareness regarding
 environment protection measures like tree plantation for soil erosion control, domestic exhaust control etc
 among colony/ villages residents and also nearby natives and tribats. Tree plantation and cultural
 among colony/ villages residents and also nearby natives and tribats. Tree plantation is done to create awareness.
 programmes (June 5th) postres/ banners are displayed and tree plantation is done to create awareness.
- 10. Occupational Health/Safety Measure Occupational Health and safety measure are taken care stipulated by DGMS in case of dust, fire, light, noise etc. Dust mask and Ear plugs/muffs are provided in critical zones.
- 11. Improved sanitation and drainage and water treatment Improved sanitation and drainage is being practiced in all houses of the colony. Residents are advised to dispose minimum amount of wastes and river water is treated and supplied to the residents for drinking purpose.
- 12. All families are shifted/ being shifted to new and safe location/ sides as per the companies policy. The rehabilitation sites are provided with infrastructural facilities like water, electricity, roads, parks, and dispensary.
- 13. Environment impact Assessment (EIA) and preparation of environment impact statement (EIS)—
 EIS is being done at corporate levels. This helps in indentifying the environment impact and thereby adopting necessary mitigation measures. The FIA is also extended for a distance of 10 KM (Buffer zone) beyond the actual project/ units area for the project which requires clearance of MOBF.

भारत कोकिंग कोल लिमिटेड (कोल इंडिया लिमिटेड का एक अंग) BHARAT COKING COAL LIMITED A Mini Ratna Company) (A Subsidiary of Coal India Limited) Office of the Project Officer, ASP Colliery

A.S-P Colliery P.O.- Sudamdih Dist.-Dhanbad Jharkhand 828126

Ref No-EJA/ASP/SMD/17/1665

Dated: 21.09.17

To,
The Member Secretory,
Jharkhand State Pollution Control Board,
TA. Division Building
HEC, Dhurwa.
RANCHI – 834004

Sub. :- Submission of Environmental Statement (From V) for the year 2016-17.

Dear Sir,

Please find herewith the Environmental Statement duly filled in the financial year 2016 – 17 in respect of Amal. S – P. Colliery.

Encl. - As Above

Yours faithfully

Project Officer Amal. S – P. Colliery

Whio/2019.17

1. J.S.P.C.B. R/Officer, Dhanbad

Area Manager (Env.)E.J. Area.
 Safety Officer, A.S – P. Colliery

4. Office copy

"FORM - V"

(See rule 14)

Environmental statement for the financial year ending 31st March 2017

PART-A

Name and address of the owner / Occupier

of the industry operation or process

: Sri D.Gangopadhyay, (D.T.),

Koyla Bhawan, Koyla Nagar, BCCL, Dhanbad

Industry category primary (STD Code)

:Coal Mining Industry (A.S-P. Colliery)

Production capacity

: 0.473 MTY.

Year of establishment

: 1962

Date of last environmental statement submitted : Dt. 29.09.2017(Ref.No. EJA/ASP/SMD/16/1436)

PART-B

1. Water and Raw Material consumption:

Water Consumption		
Process (Dust suppression)	80 KL/Day	
	Nil	
2. Cooling	254 KL/Day	
3. Domestic	234 KL/Day	

Process water consumption per unit of product point	
During the previous Financial year 2015-16	During the current Financia year 2016-17
N/A	N/A
	During the previous Financial year 2015-16

2. Raw material consumption:

2. Raw material consumption		Consumption of Raw Materials per unit of product output	
Name of products	products	During the previous Financial year 2015-16	During the current Financial year 2016-17
	Coal	0.57 Ltrs./Ton.	0.25 Ltrs./Ton.
Diesel			3.98 Kg. /Ton.
Explosive	Coal	ne details of raw material would viol	

Industry may two codes if disclosing details of raw material would violate cojntractu8al Obligations otherwise all industries have to name the material used.

PART-C

Pollution discharged to Environment / Unit of output (Parameter as specified in the consent

Pollution	Quantity of pollutants discharged (mass /day)	Concentrations of pollution in discharges (mass / volume)	Percentage of variation from prescribed stack with reason.
a) Water	Nil	Sample of mine water Total suspended solid – 36 pH – 9.05 Oil & Grease - < 2.0 COD - 36	Within the limit Within the limit Within the limit Within the limit
b) Air	4x106M ³ /day	PM10 - 96 PM 2.5 - 62 SO ₂ -< 10 NOx - 28	Within the limit Within the limit Within the limit Within the limit

PART - D

Hazardous wastes (As specified under Hazardous wastes Management and Handling rule 1989.

Hazardous waste	Total C	Quantity	
Hazardous waste	During the previous Financial year 2015-16	During the current Financial year 2016-17	
a) From Process	Quantity of Burnt Oil – 100 Ltrs. Cotton waste – 60 Kg.	Quantity of Burnt Oil – 65 Ltrs. Cotton waste – Nil Oil soaked filters – 21 Nos.	
b) From pollution control facilities	N/A	N/A	

PART – E

Solid wastes	Total Quantity	
Hazardous waste	During the previous Financial year 2015-16	During the current Financial year 2016-17
c) From Process	Quantity of Overburden generated – 1359096 M ³	Quantity of Overburden generated – 1884424 M ³
d) From pollution control	Oil & Grease trap's bottom sludge – N/A	Oil & Grease trap's bottom sludge – N/A
facilities 1. Quantity recycled or	Quantity of O/B used for back filling - 1359096 M ³	Quantity of O/B used for back filling - 1884424 M ³
reutilized with the unit	Nil	Nil
2. Solid	Nil	Nil
3 Disposal		

PART-F

Please specify the characterization (in terms of composition of quantum) of hazardous as well as soled wastes and indicate disposal practice adopted for both these categories of wastes soled wastes and indicate disposal practice adopted for both these categories of wastes.

Type of rock : Sedimentary

: There is no soil. All soil has been removed earlier. Type of soil

: N/A Chemical properties of soil

Disposal process for soled waste

: By dumper for back filling of the excavated area. (Back filling practice)

PART-G

Impact of the pollution abatement measures taken on conservation of natural resources and on the cost of production:

Ecological restoration work is going on. 5.71Ha + 3.95Ha land has been planted by 8150 + 1000 nos. of plants respectively.

PART - H

Additional measures / investment proposal for environmental protection including abatement pollution, prevention of pollution:

There is a water tanker of 20 KL capacity, which sprinkles 04 trips water daily. (i)

Fencing of ecological restoration site is being done. (ii)

Black toping of roads has been done. (iii)

Avenue plantation / Gabion plantation is going on. (iv)

PART-I

Any other particulars for improving the quality of the environment:

- 1. Carbon sequestration studies done by Forest Research Institute, Dehradun through H.Q. level. A report on the Carbon sequestration study has been submitted by FRI, Dehradun, for ecological restoration site of E.J.Area (Cluster -X), BCCL, which is attached.
- 2. Source appointment study and reduction in pollution load by reducing road transport study being done by CMPDIL group study.